ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:80.03KB ,
资源ID:107326      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-107326.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(浙江专用2020版高考数学大一轮复习 第六章数列与数学归纳法 第6讲 数学归纳法练习(含解析))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

浙江专用2020版高考数学大一轮复习 第六章数列与数学归纳法 第6讲 数学归纳法练习(含解析)

1、第6讲 数基础达标1凸n边形有f(n)条对角线,则凸(n1)边形的对角线的条数f(n1)为()Af(n)n1Bf(n)nCf(n)n1Df(n)n2解析:选C.边数增加1,顶点也相应增加1个,它与和它不相邻的n2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加n1条2用数学归纳法证明“当n为正奇数时,xnyn能被xy整除”的第二步是()A假设n2k1时正确,再推n2k3时正确(其中kN*)B假设n2k1时正确,再推n2k1时正确(其中kN*)C假设nk时正确,再推nk1时正确(其中kN*)D假设nk时正确,再推nk2时正确(其中kN*)解析:选B.因为n为正奇数,所以n2k1(k

2、N*)3用数学归纳法证明:“11)”时,由nk(k1)不等式成立,推证nk1时,左边应增加的项数是_解析:当nk时,要证的式子为1k;当nk1时,要证的式子为12,f(8),f(16)3,f(32),则其一般结论为_解析:因为f(22),f(23),f(24),f(25),所以当n2时,有f(2n).答案:f(2n)(n2,nN*)5已知数列an满足,a11,an.(1)求证:an1;(2)求证:|an1an|.证明:(1)由已知得an1,计算a2,a3,a4,猜想an1.下面用数学归纳法证明当n1时,命题显然成立;假设nk时,有an1成立,则当nk1时,ak11,ak1,即当nk1时也成立,

3、所以对任意nN*,都有an1.(2)当n1时,|a1a2|,当n2时,因为(an)(an1)(an)11,所以|an1an|anan1|a2a1|.6(2019温州高考模拟节选)已知数列an,bn满足a12,b14,且2bnanan1,abnbn1.(1)求a2,a3,a4及b2,b3,b4;(2)猜想an,bn的通项公式,并证明你的结论解:(1)因为2bnanan1,abnbn1,且a12,b14.令n1,得到解得a26,b29;同理令n2,3分别解得a312,b316,a420,b425.(2)证明:猜测ann(n1),bn(n1)2.用数学归纳法证明:当n1时,由上可得结论成立假设当nk

4、时,结论成立,即akk(k1),bk(k1)2,那么当nk1时,ak12bkak2(k1)2k(k1)(k1)(k2),bk1(k2)2.所以当nk1时,结论也成立由,可知ann(n1),bn(n1)2对一切正整数都成立7(2019台州市高三期末考试)在正项数列an中,已知a11,且满足an12an(nN*)(1)求a2,a3;(2)证明:an()n1.解:(1)因为在正项数列an中,a11,且满足an12an(nN*),所以a221,a32.(2)证明:当n1时,由已知a11()111,不等式成立;假设当nk时,不等式成立,即ak()k1,因为f(x)2x在(0,)上是增函数,所以ak12a

5、k2()k1()k()k()k()k,因为k1,所以2()k3230,所以ak1()k,即当nk1时,不等式也成立根据知不等式对任何nN*都成立8(2019台州市书生中学月考)已知数列an中,a1,an0,Sn为该数列的前n项和,且Sn1an(1an1)Sn,nN*.(1)求数列an的通项公式;(2)若不等式anan1an2a3n对一切正整数n都成立,求正整数a的最大值,并证明结论解:(1)因为Sn1an(1an1)Sn,nN*,所以Sn1Snan(1an1),所以an1an(1an1)ananan1,所以anan1anan1.又an0,所以1,所以构成以2为首项,以1为公差的等差数列,所以2

6、(n1)1n1,所以an,nN*.(2)当n1时,即,所以a.当n1时,已证;假设当nk(k1,kN*)时,不等式成立,即,则当nk1时,有.因为,即,所以0.所以当nk1时不等式也成立由知,对一切正整数n,都有,所以a的最大值等于25.能力提升1(2019宁波市诺丁汉大学附中高三期中考试)已知数列an满足a13,an1a2an,nN*,设bnlog2(an1)(1)求an的通项公式;(2)求证:1n(n2);(3)若2cnbn,求证:2()n3.解:(1)由an1a2an,则an11a2an1(an1)2,由a13,则an0,两边取对数得到log2(an11)log2(an1)22 log2

7、(an1),即bn12bn.又b1log2(a11)20,所以bn是以2为公比的等比数列即bn2n.又因为bnlog2(an1),所以an22n1.(2)证明:用数学归纳法证明:当n2时,左边为12右边,此时不等式成立;假设当nk(k2,kN*)时,不等式成立,则当nk1时,左边1kk2k个,k1右边,所以当nk1时,不等式成立综上可得:对一切nN*,n2,命题成立(3)证明:由2cnbn得cnn,所以()n()n(1)n,首先(1)nCCCCC2,其次因为C(k2),所以(1)nCCCCC11133,当n1时显然成立所以得证2已知数列an的各项均为正数,bnnan(nN*),e为自然对数的底

8、数(1)求函数f(x)1xex的单调区间,并比较与e的大小;(2)计算,由此推测计算的公式,并给出证明解:(1)f(x)的定义域为(,),f(x)1ex.当f(x)0,即x0时,f(x)单调递增;当f(x)0时,f(x)单调递减. 故f(x)的单调递增区间为(,0),单调递减区间为(0,). 当x0时,f(x)f(0)0,即1xex.令x,得1e,即ne.(2)11112;222(21)232;3233(31)343.由此推测:(n1)n.(*)下面用数学归纳法证明(*)成立当n1时,左边右边2,(*)成立. 假设当nk(k1,kN*)时,(*)成立,即(k1)k.当nk1时,bk1(k1)k1ak1,由归纳假设可得(k1)k(k1)k1(k2)k1,所以当nk1时,(*)也成立. 根据,可知(*)对一切正整数n都成立. 7