线段最值问题1. (1)如图 ,已知 O 及O 外一点 C,请在O 上找一点 P,使其到点 C 的距离最近;(2)如图 ,已知正方形 ABCD 的边长为 4.点 M 和 N 分别从点 B、C 同时出发,以相同的速度沿 BC、CD 方向向终点 C 和 D 运动连接 AM 和 BN,交于点 P.请在图中
中考数学最值Tag内容描述:
1、线段最值问题1. (1)如图 ,已知 O 及O 外一点 C,请在O 上找一点 P,使其到点 C 的距离最近;(2)如图 ,已知正方形 ABCD 的边长为 4.点 M 和 N 分别从点 B、C 同时出发,以相同的速度沿 BC、CD 方向向终点 C 和 D 运动连接 AM 和 BN,交于点 P.请在图中画出点 P 的运动路径,并求出点 P 到点 C 的最短距离;(3)如图 ,AC 为边长为 4 的菱形 ABCD 的对角线,ABC60.点 M 和 N 分别从点 B、C 同时出发,以相同的速度沿 BC、CA 方向向终点 C 和 A 运动,连接AM 和 BN,交于点 P,求点 P 到直线 CD 的最短距离第 1 题图解:(1) 如解图 ,连接 O。
2、面积最值问题1. 如图 、 ,在四边形 ABCD 中,AC90,BC CD2,AB1.(1)请在图 中找出一点 O,使得 OAOB OCOD;(2)如图 ,在ABC 中,AB5,BC6,AC 4,分别以 AB、BC 、AC 为底边作等腰三角形,且每一个等腰三角形的顶角都为 120,找出这三个等腰三角形中面积最大的那个,并求出它的面积;第 1 题图(3)如图 ,点 Q 是四边形 ABCD 外一动点,将点 Q 和与点 Q 相邻的两个点连起来,组成一个五边形,且Q2(021,7当点 Q 与点 A、D 构成以Q 为顶角的等腰三角形时,以点 A、B、C 、D 、Q为顶点的五边形的面积最大S 四边形 ABCD S BCD SABD 22 112 12。
3、 1 专题专题 33 最值问题最值问题 在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要 为以下几种: 1.二次函数的最值公式 二次函数yaxbxc 2 (a、b、c 为常数且a 0)其性质中有 若a 0当x b a 2 时,y 有最小值。y acb a min 4 4 2 ; 若a 0当x b a 2 时,y 有最大值。y acb a max 4。
4、 专题 05 面积的最值问题 2021 届中考数学压轴大题专项训练(解析版) 1如图三角形 ABC,BC12,AD是 BC边上的高 AD10P,N分别是 AB,AC 边上的点,Q,M 是 BC 上的点,连接 PQ,MN,PN交 AD于 E求 (1)若四边形 PQMN 是矩形,且 PQ:PN1:2求 PQ、PN 的长; (2)若四边形 PQMN 是矩形,求当矩形 PQMN面积最大时,求最大面积和 P。
5、3 -9 -6 Ox y B A 第第 9 9 讲讲 二次函数的线段最值和面积最值二次函数的线段最值和面积最值 模块一:二次函数的线段最值模块一:二次函数的线段最值 1定点在同侧,需要对称转化为异侧; 2动线段端点不重合,需要平移转化到同一点 模块二:二次函数的面积最值模块二:二次函数的面积最值 1铅垂法: 1 2 S 水平宽 铅垂高 分三步走:分三步走: (1)过动点作铅垂线,交另外两。
6、专题专题 52 中考数学最值问题中考数学最值问题 在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分 为几何最值和代数最值两大部分。 一、解决几何最值问题的要领一、解决几何最值问题的要领 (1)两点之间线段最短; (2)直线外一点与直线上所有点的连线段中,垂线段最短; (3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。 二、解决代。
7、核心母题一最值问题(2019台州模拟)如图,在平面直角坐标系xOy中,直线yx4与坐标轴交于A,B两点,OCAB于点C,P是线段OC上的一个动点,连结AP,将线段AP绕点A逆时针旋转45,得到线段AP,连结CP,则线段CP的最小值为( )A22 B1C21 D2【母题分析】由点P的运动确定P的运动轨迹是与x轴垂直的一段线段MN,当线段CP与MN垂直时,线段CP的值最小【母题解答】【思想方法】(1)最值(或最短路径)问题的背景来源主要有:角、等腰(边)三角形、菱形、正方形以及圆等从内容上看,还会引申到“两线段差最大”问题、三角形(四边形)的周长最小问题、面积最大等除。
8、 考纲要求考纲要求: : 1. 会用描点法画出二次函数的图像,理解二次函数的性质。 2. 利用二次函数的性质解决简单的实际问题;能解决二次函数与其他知识结合的有关问题。 基础知识回顾基础知识回顾: : 二次函数的图象和性质 二次函数的 图象和性质 图象 开口 向上上 向下下 对 称 轴 x 顶 点 坐标 增 减 性 当x时, y随x的增大而增大增大; 当 x时, y 随 x 的增大。
9、2020 年中考数学试题分类汇编之十四 最值类题 一、选择题 10 (2020 成都) (3 分)关于二次函数 2 28yxx,下列说法正确的是( ) A图象的对称轴在y轴的右侧 B图象与y轴的交点坐标为(0,8) C图象与x轴的交点坐标为( 2,0)和(4,0) Dy的最小值为9 【解答】解:二次函数 22 28(1)9(4)(2)yxxxxx , 该函数的对称轴是直线1x ,在y轴的左侧,故。
10、 1 【类型综述】 线段和差的最值问题,常见的有两类: 第一类问题是“两点之间,线段最短” 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”第二类问题是 “两点之间,线段最短”结合“垂线段最短” 【方法揭秘】 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图 1) 三条动线段的和的最小值问题,常见的是典型的“台球。
11、 1 【类型综述】 图形运动的过程中,求两条线段之间的函数关系,是中考数学的热点问题来源:ZXXK 产生两条线段间的函数关系,常见的情况有两种,一是勾股定理,二是比例关系还有一种不常见的,就 是线段全长等于部分线段之和由比例线段产生的函数关系问题,在两种类型的题目中比较常用 一是由平行线产生的对于线段成比例,二是相似三角形的对应边成比例 一般步骤是先说理产生比例关系,再代入数值或表示数的字母,最后整理、变形,根据要求写出定义域关 键是寻找比例关系,难点是有的整理、变形比较繁琐,容易出错 【方法揭秘】 由勾股定理。
12、专题二几何图形最值问题类型一 线段最值问题(2017安徽)如图,在矩形ABCD中,AB5,AD3.动点P满足SPABS矩形ABCD,则点P到A,B两点距离之和PAPB的最小值为( )A. B. C5 D.【分析】 可设P点到AB的距离为h,由SPABS矩形ABCD可得h2,过P作MNAB,分别交AD,BC于点M,N,则说明点P在MN上运动,再作A点关于点M的对称点A1,就可得出PAPBPA1PBA1B,则只需求出A1B即可【自主解答】 【方法点拨】对于几何图形最值问题,常用的策略是转化,就是把握点运动的全过程,要注意用运动与变化的眼光去观察和研究图形,抓住其中的等量关系和变量关系,其次,画出。
13、 1 【类型综述】 图形运动的过程中,求两条线段之间的函数关系,是中考数学的热点问题 产生两条线段间的函数关系,常见的情况有两种,一是勾股定理,二是比例关系还有一种不常见的,就 是线段全长等于部分线段之和由比例线段产生的函数关系问题,在两种类型的题目中比较常用 一是由平行线产生的对于线段成比例,二是相似三角形的对应边成比例 一般步骤是先说理产生比例关系,再代入数值或表示数的字母,最后整理、变形,根据要求写出定义域关 键是寻找比例关系,难点是有的整理、变形比较繁琐,容易出错 【方法揭秘】 由勾股定理产生的函。
14、【类型综述】线段和差的最值问题,常见的有两类:第一类问题是“两点之间,线段最短”两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”第二类问题是“两点之间,线段最短” 结合“ 垂线段最短”【方法揭秘】两条动线段的和的最小值问题,常见的是典型 的“牛喝水”问题,关键是指出一条对称轴“河流”(如图 1) 三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面” (如图 2) 两条线段差的最大 值问题,一般根据三角形的两。
15、专题33 最值问题专题知识回顾 在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要为以下几种:1.二次函数的最值公式二次函数(a、b、c为常数且)其性质中有若当时,y有最小值。;若当时,y有最大值。2.一次函数的增减性一次函数的自变量x的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。3. 判别式法根据题意构造一个关于未知数x的一元二次方程;再根据x是实数,推得,进而求出y的取值范围,并由此得。
16、专题33 最值问题专题知识回顾 在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要为以下几种:1.二次函数的最值公式二次函数(a、b、c为常数且)其性质中有若当时,y有最小值。;若当时,y有最大值。2.一次函数的增减性一次函数的自变量x的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。3. 判别式法根据题意构造一个关于未知数x的一元二次方程;再根据x是实数,推得,进而求出y的取值范围,并由此得。
17、3 -9 -6 Ox y B A 第第 9 9 讲讲 二次函数的线段最值和面积最值二次函数的线段最值和面积最值 模块一:二次函数的线段最值模块一:二次函数的线段最值 1定点在同侧,需要对称转化为异侧; 2动线段端点不重合,需要平移转化到同一点 模块二:二次函数的面积最值模块二:二次函数的面积最值 1铅垂法: 1 2 S 水平宽 铅垂高 分三步走:分三步走: (1)过动点作铅垂线,交另外两。
18、【类型综述】线段和差的最值问题,常见的有两类:第一类问题是“两点之间,线段最短”两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”第二类问题是“两点之间,线段最短” 结合“ 垂线段最短”【方法揭秘】两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图 1) 三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面” (如图 2) 两条线段差的最大值问题,一般根据三角形的两边。
19、最值问题一、单选题1如图,正ABC 的边长为 2,过点 B 的直线 lAB,且ABC 与ABC关于直线 l 对称,D 为线段 BC上一动点,则 ADCD 的最小值是( )A4 B3 C2 D22某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有( )A4 个 B5 个 C6 个 D7 个3跳台滑雪是冬季奥运会比赛项目之一运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度 (单位: )与水平距离 (单位: )近似满足函数关系 ( ) 下图记录了某运动员起跳后的 与 的三组数据,根据上述函数模型和数据,可。
20、一、选择题1. (2018 北京昌平区初二年级期末)已知:在 RtABC 中,C=90,BC=1,AC= 3,点 D 是斜边 AB 的中点,点 E 是边 AC 上一点,则 DE+BE 的最小值为A2 B 31 C 3 D 23答案:C二、填空题2 ( 2018 北京市石景山区初二期末)如图,将长方形纸片 ABCD 对折后再展开,得到折痕EF,M 是 BC 上一点,沿着 AM 再次折叠纸片,使得点 B 恰好落在折痕 EF 上的点 B处,连接 AB,BB判断AB B 的形状为 ;若 P 为线段 EF 上一动点 ,当 PB+PM 最小时,请描述点 P 的位置为 解:等边三角形; 与 的交点EFA三、解答题3.(2018 北京通州区一模)MBFED。