中考数学几何证明

【【2019年中考数学几何变形题归类辅导年中考数学几何变形题归类辅导】】专题专题7:旋转的应用:旋转的应用【典例引领】【典例引领】例题:在ABC和ADE中,BA=BC,DA=DE【【2019年中考数学几何变形题归类辅导年中考数学几何变形题归类辅导】】专题专题4:折叠问题:折叠问题【典例引领】【典例引

中考数学几何证明Tag内容描述:

1、第28讲 定义、命题、定理与证明,相关概念 1. 判断一件事情_叫做命题每个命题都由_和_两部分组成;命题分为_命题和_命题 2. 判断一个命题是假命题的常用方法是_ 3. 公认的真命题称为_;其他真命题的正确性都要通过_的方法证实,推理的过程称为_,经过证明的真命题称为_ 4. 任何一个命题都有_命题,但一个定理_有逆定理,正确或错误的句子,题设,结论,真,假,举反例,公理,推理,证明,定理,逆,不一定,下列命题中真命题是( ) A. ( )2一定成立 B. 位似图形不可能全等 C. 正多边形都是轴对称图形 D. 圆锥的主视图一定是等边三角形,真假命题的判断,(2。

2、圆的相关证明与计算类型一圆性质的相关证明与计算(省卷:2019.23)1. (2019广西北部湾经济区)如图,ABC是O的内接三角形,AB为O直径,AB6,AD平分BAC,交BC于点E,交O于点D,连接BD.(1)求证:BADCBD;(2)若AEB125,求的长(结果保留)第1题图2. (2019绵阳)如图,AB是O的直径,点C为的中点,CF为O的弦,且CFAB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:BFGCDG;(2)若ADBE2,求BF的长第2题图3. (2019温州)如图,在ABC中,BAC90,点E在BC边上,且CACE,过A,C,E三点的O交AB于另一点F,作直径AD,连接DE并延长交AB于点G,连接CD,CF.。

3、图形变换有关的计算与证明1.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角形的斜边上,AC与DM , DN分别交于点E , F , 把DEF绕点D旋转到一定位置,使得DE=DF , 则BDN的度数是()A.105B.115。

4、2018 初三中考数学复习 平行线的证明 专题复习练习1. 下列说法正确的是( D ) A经验、观察或试验完全可以判断一个数学结论的正确与否 B推理是科学家的事,与我们没有多大的关系 C对于自然数 n,n 2n37 一定是质数 D有 10 个苹果,将它放进 9 个筐中,则至少有一个筐中的苹果不少于 2 个 2. “两条平行直线被第三条直线所截,同位角相等”这句话是( C ) A定义 B假命题 C公理 D定理 3. 下列语句中,是命题的是( C )A直线 AB 和 CD 垂直吗 B过线段 AB 的中点 C 画 AB 的垂线C 同旁内角不互补,两直线不平行 D连接 A,B 两点4如图,ABCD ,CB D。

5、专题(四),与圆有关的计算和证明,(1)构造思想:构建矩形转化线段;构建“相似”基本图研究线段;构造垂径定理模型:弦长一半、弦心距、半径、弓高(知二推二);构造勾股定理模型(已知线段长度);构造三角函数(已知有角度的情况). (2)方程思想:设出未知数表示关键线段,通过线段之间的关系,特别是发现其中的相等关系建立方程,解决问题. (3)建模思想:借助基本图形的结论发现问题中的线段关系,把问题分解为若干基本图形的问题,通过基本图形的解题模型快速发现图形中的基本结论,进而找出隐藏的线段之间的数量关系.,圆的有关计算与证明是中考的必考内。

6、命题与证明一、选择题1.下列命题中,错误的是( ) A. 矩形的对角线互相平分且相等 B. 等腰三角形底边上的中点到两腰的距离相等C. 等腰梯形的两条对角线相等 D. 对角线互相垂直的四边形是菱形2.下列说法中,正确的是 ( )A. 一个角的补角一定比这个角大 B. 一个角的余角一定比这个角小C. 一对对顶角的两条角平分线必在同一条直线上 D. 有公共顶点并且相等的两个角是对顶角。3.已知下列命题中为真命题的是( ) 的算术平方根是 4;若 ma2na 2 , 则 mn;正八边形的一个内角的度数是 135;对角线互相垂直平分的四边形是菱形;平分弦的直径。

7、圆的有关计算与证明解答题 1.ABC 的内切圆O 与 BC, CA,AB 分别相切于点 D、E、F ,且 AB=11cm,BC=16cm,CA=15cm,求AF、BD、CE 的长?2.如图,在 44 的方格纸中(共有 16 个小方格),每个小方格都是边长为 1 的正方形O、A、B 分别是小正方形的顶点,求扇形 OAB 的弧长,周长和面积(结果保留根号及 )3.如图,直线 y= 与 x 轴、y 轴分别相交于 A,B 两点 ,圆心 P 的坐标为(1,0),圆 P 与 y 轴相切于点 O.若将圆 P 沿 x 轴向左移动,当圆 P 与该直线相交时,求横坐标为整数的点 P 的个数.4.如图所示,已知 F 是以 O 为圆心,BC 为直径的半圆。

8、图形变换有关的计算与证明1.一副三角板叠在一起如图放置,最小锐角的顶点 D 恰好放在等腰直角三角形的斜边上,AC 与 DM , DN 分别交于点 E , F , 把DEF 绕点 D 旋转到一定位置,使得 DE=DF , 则BDN 的度数是( )A. 105 B. 115 C. 120 D. 1352.如图所示,OAC 和BAD 都是等腰直角三角形,ACO=ADB=90,反比例函数 y= 在第一象限的图象经过点 B,与 OA 交于点 P,且 OA2AB2=18,则点 P 的横坐标为( ) A. 9 B. 6 C. 3 。

9、中考学练测数学人教 第四部分第四部分 题型二题型二 首 页 课件目录 末 页 第四部分第四部分 中考重难题型研究中考重难题型研究 题型二题型二 圆的证明与计算圆的证明与计算 类型之一类型之一 与全等三角形有关与全等三角形有关 2019 郴州郴州如图,已知如图,已知 AB 是是O 的直径,的直径,CD 与与O 相切于点相切于点 D,且,且 AD OC. (1)求证:求证:BC 是是O 的切。

10、2021 年中考数学几何教学重难点专题:轴对称之线段最短问题(年中考数学几何教学重难点专题:轴对称之线段最短问题(五五) 1在平面直角坐标系中,P 点坐标为(2,6) ,Q 点坐标为(2,2) ,点 M 为 y 轴上的动点 (1)在平面直角坐标系内画出当PMQ 的周长取最小值时点 M 的位置 (保留作图痕迹) (2)写出点 M 的坐标 2如图,在锐角三角形 ABC 中,BC4,ABC4。

11、 【2019 年中考数学几何变形题归类辅导年中考数学几何变形题归类辅导】 专题专题 6:直角三角形性质的应用:直角三角形性质的应用 【典例引领】【典例引领】 例:如图,在 RtABC 中,AC=BC,ACB=90 ,点 D,E 分别在 AC,BC 上,且 CD=CE (1)如图 1,求证:CAE=CBD; (2)如图 2,F 是 BD 的中点,求证:AECF; (3)如图 3,F,G 分别是 BD,AE 的中点,若 AC=2 ,CE=1,求CGF 的面积 【答案】【答案】(1)证明见解析;(2)证明见解析;(3)S CFG = 【解析】【解析】(1)直接判断出ACEBCD 即可得出结论; (2)先判断出BCF=CBF,。

12、 【2019 年中考数学几何变形题归类辅导年中考数学几何变形题归类辅导】 专题专题 8:相似三角形性质和判定的应用:相似三角形性质和判定的应用 【典例引领】【典例引领】 例:如图,在矩形 ABCD 中,AB=3,BC=5,E 是 AD 上的一个动点 (1)如图 1,连接 BD,O 是对角线 BD 的中点,连接 OE当 OE=DE 时,求 AE 的长; (2)如图 2,连接 BE,EC,过点 E 作 EFEC 交 AB 于点 F,连接 CF,与 BE 交于点 G当 BE 平分 ABC 时,求 BG 的长; (3)如图 3,连接 EC,点 H 在 CD 上,将矩形 ABCD 沿直线 EH 折叠,折叠后点 D 落在 EC 上的点 D处。

13、 【2019 年中考数学几何变形题归类辅导年中考数学几何变形题归类辅导】 专题专题 5:角平分线性质的应用:角平分线性质的应用 【典例引领】【典例引领】 例: 在等腰ABC 中,B=90 ,AM 是ABC 的角平分线,过点 M 作 MNAC 于点 N,EMF=135 将 EMF 绕点 M 旋转,使EMF 的 两边交直线 AB 于点 E,交直线 AC 于点 F,请解答下列问题: (1)当EMF 绕点 M 旋转到如图的位置时,求证:BE+CF=BM; (2)当EMF 绕点 M 旋转到如图,图的位置时,请分别写出线段 BE,CF,BM 之间的数量关系,不 需要证明; (3)在(1)和(2)的条件下,tanBEM=3,A。

14、 【2019 年中考数学几何变形题归类辅导】年中考数学几何变形题归类辅导】 专题专题 2:倍长中线法倍长中线法 【典例引领】【典例引领】 例题:(2014 黑龙江龙东地区)已知 ABC 中,M 为 BC 的中点,直线 m 绕点 A 旋转,过 B、M、C 分别 作 BDm 于 E,CFm 于 F。 (1)当直线 m 经过 B 点时,如图 1,易证 EM= CF。(不需证明) (2)当直线 m 不经过 B 点,旋转到如图 2、图 3 的位置时,线段 BD、ME、CF 之间有怎样的数量关系? 请直接写出你的猜想,并选择一种情况加以证明。 【答案】(2)证明见解析 【分析】图 2,连接 DM 并延长交。

15、几何证明东城区19. 如图,在 ABC 中, BAC=90, AD BC 于点 D. BF 平分 ABC 交 AD 于点 E,交 AC 于点 F. 求证: AE=AF. 19.证明: BAC=90, FBA+ AFB=90. -1 分 AD BC, DBE+ DEB=90- 2 分 BE 平分 ABC, DBE= FBA. -3 分 AFB= DEB. -4 分 DEB= FEA, AFB= FEA. AE=AF. -5 分西城区19如图, AD平分 BC, DA于点 , B的中点为 E, AC(1)求证: E (2)点 F在线段 上运动,当 FE时,图中与 DF全等的三角形是_EDCBA【解析】 (1)证明: AD平分 BC, 2, BD于点 ,。

16、几何证明专题宝山区、嘉定区23.(本题满分 12 分,第(1)小题 6 分,第(2)小题 6 分)如图 6,在正方形 ABCD中,点 M是边 BC上的一点(不与 B、 C重合) ,点 N在CD边的延长线上,且满足 90N,联结 、 A, M与边 D交于点 E.(1)求证; ;(2)如果 2,求证: E2.23.证明:(1)四边形 ABCD是正方形 , 90BCDA1 分 90M N N 1 分 18ADC 901 分 B1 分 1 分 NM 1 分(2)四边形 ACD是正方形 AC平分 BD和 A 4521B , 4521B1分 N .2 ADM 51 分 5.2C .NAEC , 90 4NE A1 分BA图 6CBANDME图 6 ACM NE1 分 1 分 AE21 分长宁区23 (本题满分 12 。

17、 【2019 年中考数学几何变形题归类辅导】年中考数学几何变形题归类辅导】 专题 3:截长补短法 【典例引领】【典例引领】 例题:(2013 黑龙江龙东地区)正方形 ABCD 的顶点 A 在直线 MN 上,点 O 是对角线 AC、BD 的交点, 过点 O 作 OE MN 于点 E,过点 B 作 BFMN 于点 F。 (1)如图 1,点 O、B 两点均在直线 MN 上方时,易证:AF+BF=2OE(不需证明) (2)当正方形 ABCD 绕点 A 顺时针旋转至图 2、图 3 的位置时,线段 AF、BF、OE 之间又有怎样的关系? 请直接写出你的猜想,并选择一种情况给予证明。 【答案】图 2 结论:AFBF=2OE,图。

18、 【2019 年中考数学几何变形题归类辅导年中考数学几何变形题归类辅导】 专题专题 1:构造等边三角形:构造等边三角形 【典例引领】【典例引领】 例:例:在菱形 ABCD 中,ABC=60,E 是对角线 AC 上一点,F 是线段 BC 延长线上一点,且 CF=AE,连 接 BE、EF。 (1)若 E 是线段 AC 的中点,如图 1,易证:BE=EF(不需证明); (2)若 E 是线段 AC 或 AC 延长线上的任意一点,其它条件不变,如图 2、图 3,线段 BE、EF 有怎样的数 量关系,直接写出你的猜想;并选择一种情况给予证明。 【答案】(1)证明见解析;(2)证明见解析 【分析】 。

19、 【2019 年中考数学几何变形题归类辅导年中考数学几何变形题归类辅导】 专题专题 4:折叠问题:折叠问题 【典例引领】【典例引领】 例:如图,四边形 ABCD 是正方形,点 E 在直线 BC 上,连接 AE将ABE 沿 AE 所在直线折叠,点 B 的 对应点是点 B,连接 AB并延长交直线 DC 于点 F (1)当点 F 与点 C 重合时如图(1),易证:DF+BE=AF(不需证明); (2)(2)当点 F 在 DC 的延长线上时如图(2),当点 F 在 CD 的延长线上时如图(3),线段 DF、BE、 AF 有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明 【答案】(2)图。

20、 【2019 年中考数学几何变形题归类辅导年中考数学几何变形题归类辅导】 专题专题 7:旋转的应用:旋转的应用 【典例引领】【典例引领】 例题:在ABC 和ADE 中,BA=BC,DA=DE,且ABC=ADE= ,点 E 在ABC 的内部,连接 EC, EB 和 BD,并且ACE+ABE=90 . (1)如图 1,当 =60 时,线段 BD 与 CE 的数量关系为 ,线段 EA,EB,EC 的数量关系 为 ; (2)如图 2 当 =90 时,请写出线段 EA,EB,EC 的数量关系,并说明理由; (3)在(2)的条件下,当点 E 在线段 CD 上时,若 BC= ,请直接写出BDE 的面积. 【答案】【答案】(1) ;(2) ;(3)2。

【中考数学几何证明】相关PPT文档
【中考数学几何证明】相关DOC文档
标签 > 中考数学几何证明[编号:39724]