,安徽中考20142018 考情分析,基础知识梳理,中考真题汇编,安徽中考20142018 考情分析,说明:从上表可以看出全等三角形属于安徽中考的核心考点,连续五年均在压轴题中与其他知识结合作为其中的一个小题出现,分值不大,但它是后继解答的基础.2018年安徽中考还在选择题中考查平行四边形的判定时渗
中考大一轮数学复习课件 课时24 三角形与全等三角形Tag内容描述:
1、安徽中考20142018 考情分析,基础知识梳理,中考真题汇编,安徽中考20142018 考情分析,说明:从上表可以看出全等三角形属于安徽中考的核心考点,连续五年均在压轴题中与其他知识结合作为其中的一个小题出现,分值不大,但它是后继解答的基础.2018年安徽中考还在选择题中考查平行四边形的判定时渗透考查了全等三角形的判定和性质鉴如此,本节内容复习时需重点掌握判定两个三角形全等的方法 预测2019年安徽中考命题趋势:(1)仍然可能会把考查全等三角形的知识与其他有关知识结合,作为解答题的一个小题出现,出现在压轴题中的可能性更大;(2)可。
2、第四章 三角形,第一部分 基础过关,第3讲 全等三角形,3,考情通览,4,5,1全等三角形的概念及判定 (1)能够完全重合的两个三角形叫做全等三角形 (2)全等三角形的判定有:“边边边”(SSS)、“边角边”(SAS)、“角角边”(AAS)、“角边角”(ASA) 特别的:两个直角三角形的判定还有“斜边直角边”(HL),知识梳理,要点回顾,6,1.已知:如图,点B、F、C、E在一条直线上,AD,ACDF.添加一个条件,使得ABCDEF,并加以证明你添加的条件是 _(不添加辅助线),答案不唯一,如ABDE,或BE,或ACBDFE,即时演练,7,2全等三角形的性质 全等三角形的对应边相等,对应。
3、高考专题突破二 高考中的三角函数与解 三角形问题,第四章 三角函数、解三角形,NEIRONGSUOYIN,内容索引,题型分类 深度剖析,课时作业,题型分类 深度剖析,1,PART ONE,题型一 三角函数的图象和性质,例1 (2016山东)设f(x)2 sin(x)sin x(sin xcos x)2. (1)求f(x)的单调递增区间;,师生共研,把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),,三角函数的图象与性质是高考考查的重点,通常先将三角函数化为yAsin(x)k的形式,然后将tx视为一个整体,结合ysin t的图象求解.,(1)函数f(x)的最小正周期;,(2)函数f(x)的单调区间;,(3)函数f(。
4、第17讲 等腰三角形与直角三角形,等腰三角形,1.等腰三角形的概念 有 相等的三角形叫做等腰三角形; 都相等的三角形叫做等边三角形.,两边,三条边,2.等腰三角形的性质与判定,等边对等角,顶角平分线,底边上的高,三线合一,顶角平分线,相等,两角,等角对等边,3.等边三角形的性质与判定,60,轴,3,三条,角,60,等腰三角形,直角三角形的性质与判定,互余,平方和,平方,一半,一半,直角,互余,平方和,平方,两个重要互逆定理,1.角平分线:(1)性质:角平分线上的点到角两边的距离 . (2)判定:角的内部到角两边 的点在角的平分线上. 2.线段垂直平分线:(1)性质:线段。
5、,第5课时 解直角三角形,考点突破,3,中考特训,4,广东中考,5,课前小测,C,第2题图,D,课前小测,A,第3题图,课前小测,4如图,一艘船以40 nmile/h的速度由西向东航行,航行到A处时,测得灯塔P在船的北偏东30方向上,继续航行2.5 h,到达B处,测得灯塔P在船的北偏西60方向上,此时船到灯塔的距离为_nmile.(结果保留根号) 第4题图,课前小测,知识精点,知识点一:锐角三角函数,2特殊角三角函数值,知识精点,知识精点,知识点二:解直角三角形,1解直角三角形:由直角三角形中的已知元素, 求出其余未知元素的过程叫做解直角三角形 2解直角三角形的类型:。
6、 第 22 课时 全等三角形 (60 分) 一、选择题(每题 5 分,共 25 分) 12019衡阳下列命题是假命题的是( ) An边形(n3)的外角和是 360 B线段垂直平分线上的点到线段两个端点的距离相等 C相等的角是对顶角 D矩形的对角线互相平分且相等 22019安顺如图,点B,F,C,E在一条直线上,ABDE,ACDF,添加下列一个 条件后,仍无法判断ABCDEF的是( ) AABD。
7、课题20 全等三角形,基础知识梳理,中考题型突破,易混易错突破,河北考情探究,考点一 全等图形,基础知识梳理,1.全等图形 (1)概念:两个能够完全重合的图形称为全等图形. (2)全等图形的形状和大小相同,即全等图形的面积和周长 相等 .全等 图形的对应角,对应边都分别 相等 .,2.全等三角形的性质 (1)全等三角形的对应边 相等 ,对应角 相等 . (2)全等三角形的对应线段(角平分线、中线、高)相等.全等三角形的周长相 等,面积 相等 .,考点二 全等三角形的判定 (1) 三边 对应相等的两个三角形全等(SSS). (2) 两边及两边的夹角 对应相等的两个三角形全。
8、,第2课时 三角形的重要概念,考点突破,3,中考特训,4,广东中考,5,课前小测,1(2019徐州) 下列长度的三条线段,能组成三角形的是( ) A2,2,4 B5,6,12 C5,7,2 D6,8,10,D,课前小测,B,2(2019赤峰) 如图,点D在BC的延长线 上,DEAB于点E,交AC于点F.若A35,D15,则ACB的度数为( ) A65 B70 C75 D85 第2题图,课前小测,3(2019杭州) 在ABC中,若一个内角等于另外两个内角的差,则( ) A必有一个内角等于30 B必有一个内角等于45 C必有一个内角等于60 D必有一个内角等于90,D,课前小测,4(2019百色) 三角形的内角和等于_,360,75,知识精点,知识点一:。
9、首 页 末 页 第二部分第二部分 图形与几何图形与几何 第七章第七章 三角形三角形 考考 点点 管管 理理 中中 考考 再再 现现 课课 时时 作作 业业 归归 类类 探探 究究 第第2222课时课时 全等三角形全等三角形 首 页 末 页 。
10、,第4课时 特殊三角形,考点突破,3,中考特训,4,广东中考,5,课前小测,D,1在ABC中,BC,AB5,则AC的长为( ) A2 B3 C4 D5 2等腰三角形的一个角是80,则它顶角的 度数是( ) A80 B80或20 C80或50 D20,B,课前小测,D,课前小测,2,4如图,在ABC中,ACB90,点D、E、F分别是AB、BC、CA的中点若CD2,则线段EF的长是_ 第4题图,课前小测,5如图,在RtABC中,BAC90,点D为BC边中点,且ABD为等边三角形,若AB2,求ABC的周长(结果保留根号) 第5题图,知识精点,知识点一:等腰三角形与等边三角形,知识精点,3,知识精点,知识点二:直角三角形,1直角三角形的性质与。
11、第 24 课时 全等三角形 教学目标:教学目标:通过复习,查缺补漏,发展学生直观想象、逻辑推理能力,提高综合应试水平. 复习重点:复习重点:三角形全等的判定 复习策略:复习策略:以题带知识点,基础过关,变式提升,分层要求,配套课件 教学过程: 教学过程: 例1.已知:如图,ABCEBD,则EBC 的度数是( A ) 70DBE o 110DBA o A.30 o B.35 o C. 40o。
12、,第3课时 全等三角形,考点突破,3,中考特训,4,广东中考,5,课前小测,C,第1题图,课前小测,A,2(2019安顺) 如图, 点B、F、C、E在一条直 线上,ABED,ACFD, 那么添加下列一个条件 第2题图 后,仍无法判定ABCDEF的是( ) AAD BACDF CABED DBFEC,课前小测,3如图,已知在四边形ABCD中,BCD90, BD平分ABC,AB6,BC9,CD4,则四边形 ABCD的面积是_,30,课前小测,4如图,D是AB上一点,DF交AC于点E,DE FE,FCAB,若AB4,CF3,则BD的长是 _ 第4题图,1,课前小测,5如图,12,34,求证:ACAD.,知识精点,知识点一:三角形全等的判定和性质,1全等图形:能够。
13、一、三角形的概念和性质 1. 三角形的定义:由不在同一条直线上的_条线段首尾顺次相接组成的图形叫做三角形 注意:三条线段必须:不在一条直线上,首尾顺次相接,三,2. 三角形的分类,3. 三角形的高、中线、角平分线、中位线 (1)高:在三角形中,过一个顶点向它所对的边所在的直线画垂线,顶点和_之间的线段叫做三角形的高三条高的交点叫做三角形的_ 注意:高与垂线不同,高是线段,垂线是直线 (2)中线:在三角形中,连接一个顶点和它所对边的_的线段叫做三角形的中线;三角形的三条中线的交点叫做三角形的_ (3)角平分线:在三角形中,一个_角。
14、第16讲 三角形与全等三角形,三角形中的重要线段,1.直线、射线、线段的区别,中点,DC,垂线段,BC,90,2,BC,三角形的性质,1.三角形的分类,2.三边关系 三角形的任意两边之和 ,两边之差 . 3.三角形的内角和定理及推论 (1)三角形的内角和等于180,外角和等于360. (2)直角三角形的两个锐角 . (3)三角形的一个外角 与它不相邻的两个内角的和. (4)三角形的一个外角 与它不相邻的任何一个内角.,大于第三边,小于第三边,互余,等于,大于,全等三角形,1.性质 (1)全等三角形的 、 分别相等; (2)全等三角形的对应线段(角平分线、高、中线、中位线) ,周长 ,面积。
15、,课时27 锐角三角函数与解直角三角形,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,夯实基本 知已知彼,夯实基本 知已知彼,课前预测你很棒,B,D,D,B,D,课前预测你很棒,热点一 锐角三角函数的定义 热点搜索 锐角三角函数的概念是指锐角的正弦、余弦、正切的概念;在解题时,若能利用锐角三角函数定义把三角函数转化为线段的比,或把线段比转化为三角函数,实现三角函数与线段比之间的灵活转换,则可起到事半功倍的效果,热点看台 快速提升,C,B,热点看台 快速提升,热点二 特殊角的三角函数值 热点搜索 有关三角函数值计算题是中考中的一。
16、,课时26 相似三角形,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,夯实基本 知已知彼,夯实基本 知已知彼,4. 相似三角形的判定 (1)两边对应_,且夹角_的两个三角形相似 (2)两角对应相等的两个三角形相似 (3)三边对应_的两个三角形相似 温馨提示 直角三角形相似的条件:两直角边对应成比例的两个直角三角形相似有一个锐角对应相等的两直角三角形相似有斜边和一直角边对应成比例的两个直角三角形相似 5. 位似图形及性质 (1)定义:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,。
17、,课时25 等腰三角形与直角三角形,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 等腰三角形 (1)概念及分类: _的三角形叫等腰三角形;_的三角形叫做等边三角形,也叫正三角形;等腰三角形分为_的等腰三角形和_的等腰三角形 (2)等腰三角形的性质: 等腰三角形两腰相等;等腰三角形的两个底角_ 等腰三角形的顶角角平分线、底边上的中线和高互相_,简称“三线合一” 等腰(非等边)三角形是轴对称图形,它有一条对称轴 等腰三角形边长须满足两腰之和大于底;等腰三角形的底角满足090;顶角满足0180. (3)等腰三角形的判定。
18、,课时24 三角形与全等三角形,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 三角形的概念与分类 (1)由三条线段_所围成的平面图形,叫做三角形 (2)三角形按边可分为:_三角形和_三角形;按角可分为_三角形、_三角形和_三角形 2. 三角形的性质 (1)三角形的内角和是_,三角形的外角等于与它_的两个内角的和,三角形的外角大于任何一个和它不相邻的内角 (2)三角形的两边之和_第三边,两边之差_第三边 3. 三角形中的重要线段 (1)角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的_三角形的。