证明与反驳

章末复习,第一章 推理与证明,学习目标,1.整合本章知识要点. 2.进一步理解归纳推理与类比推理的概念、思维形式、应用等. 3.进一步熟练掌握直接证明与间接证明. 4.理解数学归纳法,并会用数学归纳法证明问题.,知识梳理,达标检测,题型探究,内容索引,知识梳理,1.归纳与类比 (1)归纳推理:由 到

证明与反驳Tag内容描述:

1、章末复习,第一章 推理与证明,学习目标,1.整合本章知识要点. 2.进一步理解归纳推理与类比推理的概念、思维形式、应用等. 3.进一步熟练掌握直接证明与间接证明. 4.理解数学归纳法,并会用数学归纳法证明问题.,知识梳理,达标检测,题型探究,内容索引,知识梳理,1.归纳与类比 (1)归纳推理:由 到 、由 到 的推理. (2)类比推理:由 到 的推理. (3)合情推理:合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.,部分,整体,个别,一般,特殊,特殊,2.综合法和分析法 (1) 是从。

2、 1 题型一:合情推理 【例1】迄今为止,人类已借助“网格计算”技术找到了 630 万位的最大质数。小王发现 由 8 个质数组成的数列 41,43,47,53,61,71,83,97 的一个通项公式, 并根据通项公式得出数列的后几项,发现它们也是质数。小王欣喜万分,但小 王按得出的通项公式,再往后写几个数发现它们不是质数。他写出不是质数的 一个数是 ( ) A1643 B1679 C1681 D1697 【考点】合情推理 【难度】2 星 【题型】选择 【关键词】无 【解析】 观察可知: 2132431 2,4,6,2(1), nn aaaaaaaan 累加可得: 1 (1)(222)(1) 242(1) 22 n nnnn aan。

3、高中数学专题04 推理与证明【母题来源一】【2019年高考全国卷文数】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是A165 cmB175 cmC185 cmD190 cm【答案】B【解析】方法一:如下图所示.依题意可知:,由腿长为105 cm得,所以AD169.89.头顶至脖子下端长度为26 cm,即AB26,所以.综上,.故选B.。

4、 1 合情推理演 绎证明与数 学归纳法 要求层 次 重难点 推理证明 A 掌握数学归纳法的证明步骤,熟练表达 数学归纳法证明过程.对数学归纳法的 认识不断深化.掌握数学归纳法的应用: 证恒等式;整除性的证明;探求 平面几何中的问题; 探求数列的通项; 不等式的证明. 直接证明与间接证明 A 数学归纳法 B 演绎推理 C 板块一:合情推理与演绎推理 知识内容 1.推理 根据一个或几个事实(或假设)得出一个判断,这种思维方式叫推理. 从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一 部分是由已知推出的判断,叫结论. 2、合。

5、1综合法的定义利用_和某些数学_、_、_等,经过一系列的_,最后推导出所要证明的结论成立,这种证明方法叫做综合法2综合法的特点从“已知”看“_”,逐步推向“_”,其逐步推理,是由_导_,实际上是寻找“已知”的_条件3综合法的基本思路用_表示已知条件、已有的定义、定理、公理等,_表示所要证明的结论,则综合法的推理形式为其逻辑依据是三段论式演绎推理4分析法定义从要证明的_出发,逐步寻求使它成立的_条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.学。

6、1综合法的定义利用_和某些数学_、_、_等,经过一系列的_,最后推导出所要证明的结论成立,这种证明方法叫做综合法2综合法的特点从“已知”看“_”,逐步推向“_”,其逐步推理,是由_导_,实际上是寻找“已知”的_条件3综合法的基本思路用_表示已知条件、已有的定义、定理、公理等,_表示所要证明的结论,则综合法的推理形式为其逻辑依据是三段论式演绎推理4分析法定义从要证明的_出发,逐步寻求使它成立的_条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.5分。

7、推理与证明全章复习与巩固编稿:张林娟 审稿:孙永钊 【考纲要求】1.能对推理与证明的各种方法进行梳理,建立知识网络,把握整体结构.2.能比较数学证明的几种基本方法的思维过程和特点,灵活选用各种方法进行一些数学证明.3.了解合情推理和演绎推理之间的联系、差异和各自所起的作用.【知识网络】【考点梳理】要点一:归纳与类比数学推理是由一个或几个已知的判断(或前提),推导出一个未知结论的思维过程一般包括合情推理和演绎推理,而归纳和类比是合情推理的两种主要形式.归纳推理概念根据某类事物的部分对象具有某种特征,推出该类事物。

8、推理与证明全章复习与巩固编稿:张林娟 审稿:孙永钊 【考纲要求】1.能对推理与证明的各种方法进行梳理,建立知识网络,把握整体结构.2.能比较数学证明的几种基本方法的思维过程和特点,灵活选用各种方法进行一些数学证明.3.了解合情推理和演绎推理之间的联系、差异和各自所起的作用.【知识网络】【考点梳理】要点一:归纳与类比数学推理是由一个或几个已知的判断(或前提),推导出一个未知结论的思维过程一般包括合情推理和演绎推理,而归纳和类比是合情推理的两种主要形式.归纳推理概念根据某类事物的部分对象具有某种特征,推出该类事物。

9、第六节第六节 直接证明与间接证明直接证明与间接证明 知识重温知识重温 一必记 3 个知识点 1综合法 一般地,利用,经过一系列的,最后推导出所要 证明的结论成立,这种证明方法叫做综合法 用 P 表示已知条件已有的定义公理定理等,Q 表示所要。

10、 2020年高考文科数学推理与证明题型归纳与训练【题型归纳】题型一 归纳推理例1 已知,若,则的表达式为_【答案】【解析】由,得,可得,故可归纳得例2 观察下列等式: 照此规律, 第个等式可为 【答案】1222+3242+(1)n+1n2=(1)n+1(n) 【解析】 观察上式等号左边的规律发现,左边的项数一次加1,故第个等式左边有 项,每项所含的底数的绝对值也增加1,一次为1,2,3,指数都是2,符号成正负交替出现可以用表示,等式的右边数的绝对值是左边项的底数的和,故等式的右边可以表示为,所以第个式子可为1222+3242+=(1)n+1()例3 古希腊毕。

11、2020年高考理科数学推理与证明题型归纳与训练合情推理与演绎推理题型一 归纳推理1与数字有关的等式的推理【易错点】例1观察下列等式:2212;222223;222234;222245;照此规律,2222_.【答案】n(n1)【解析】观察等式右边的规律:第1个数都是,第2个数对应行数n,第3个数为n1.2与不等式有关的推理例2已知ai0(i1,2,3,n),观察下列不等式:;照此规律,当nN*,n2时,_.【答案】【解析】根据题意得(nN*,n2)3与数列有关的推理例3观察下列等式:123nn(n1);136n(n1)n(n1)(n2);1410n。

12、7.6直接证明与间接证明考情考向分析高考要求了解分析法、综合法、反证法,会用这些方法处理一些简单问题,高考一般不单独考查,会与其他知识综合在一起命题1直接证明(1)定义:直接从原命题的条件逐步推得命题成立的证明方法(2)一般形式ABC本题结论(3)综合法定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止这种证明方法常称为综合法推证过程(4)分析法定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止这种证明方法常称为分析法推。

13、 1 版块一:合情推理与演绎推理版块一:合情推理与演绎推理 题型一:合情推理 【题1】迄今为止,人类已借助“网格计算”技术找到了 630 万位的最大质数。小王发现 由 8 个质数组成的数列 41,43,47,53,61,71,83,97 的一个通项公式, 并根据通项公式得出数列的后几项,发现它们也是质数。小王欣喜万分,但小 王按得出的通项公式,再往后写几个数发现它们不是质数。他写出不是质数的 一个数是 ( ) A1643 B1679 C1681 D1697 【答案】C。 【题2】观察下列数的特点 1,2,2,3,3,3,4,4,4,4, 中,第 100 项是( ) 【答案】 (C) 。

14、 1 一、选择题 【题1】下面几种推理过程是演绎推理的是 ( ) A、两条直线平行,同旁内角互补,如果A 和B 是两条平行直线的同旁内 角,则A+B=180 B、由平面三角形的性质,推测空间四面体性质 C、某校高三共有 10 个班,1 班有 51 人,2 班有 53 人,三班有 52 人,由此推 测各班都超过 50 人 D、在数列 n a中,)2)( 1 ( 2 1 , 1 1 11 n a aaa n nn ,由此推出 n a的通项公式 【答案】A。 【题2】如图,椭圆中心在坐标原点,F 为左焦点,当FBAB时,其离心率为 51 2 ,此类 椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出”黄金双曲线”的离。

15、 1 合情推理演 绎证明与数 学归纳法 要求层 次 重难点 推理证明 A 掌握数学归纳法的证明步骤,熟练表达 数学归纳法证明过程.对数学归纳法的 认识不断深化.掌握数学归纳法的应用: 证恒等式;整除性的证明;探求 平面几何中的问题; 探求数列的通项; 不等式的证明. 直接证明与间接证明 A 数学归纳法 B 演绎推理 C 一、合情推理与演绎推理一、合情推理与演绎推理 1.推理 根据一个或几个事实(或假设)得出一个判断,这种思维方式叫推理. 从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一 知识内容 高考要求 模块框架 。

16、 13.2 直接证明与间接证明直接证明与间接证明 最新考纲 考情考向分析 1.了解直接证明的两种基本方法 分析法和综合法;了解分析法和综合 法的思考过程和特点. 2.了解反证法的思考过程和特点. 本节主要内容是直接证明的方法综合法和分析 法, 间接证明的方法反证法, 它常以立体几何中 的证明及相关选修内容中平面几何, 不等式的证明为 载体加以考查, 注意提高分析问题、 解决问题的能力; 在高考中主要以解答题的形式考查,难度中档. 1直接证明 (1)综合法 定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证。

17、7.6直接证明与间接证明最新考纲考情考向分析1.了解直接证明的两种基本方法分析法和综合法;了解分析法和综合法的思考过程和特点2.了解反证法的思考过程和特点.常以立体几何中的证明及相关选修内容中平面几何,不等式的证明为载体加以考查,注意提高分析问题、解决问题的能力;在高考中主要以解答题的形式考查,难度为中档.1直接证明内容综合法分析法定义从已知条件出发,经过逐步的推理,最后达到待证结论的方法,是一种从原因推导到结果的思维方法从待证结论出发,一步一步地寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的。

18、直接证明与间接证明编稿:张林娟 审稿:孙永钊【学习目标】1 知识与技能通过具体的例子了解综合法和分析法、反证法的思路过程和特点;通过已经学过的数学实例,了解直接证明的两种基本方法直接证明和间接证明,及间接证明的重要方法之一反证法;能够用直接法和间接法证明一些基本的数学问题2过程与方法通过对实例的分析,归纳和总结的过程,培养数学理性思维能力;通过实际演练,体会综合法、分析法、反证法的证明过程及两种证明方法的特点3情感、态度与价值观通过实际参与,激发学习数学的兴趣,在学习过程中感受逻辑证明在数学已经日常。

19、直接证明与间接证明编稿:张林娟 审稿:孙永钊【学习目标】1. 知识与技能通过具体的例子了解综合法和分析法、反证法的思路过程和特点;通过已经学过的数学实例,了解直接证明的两种基本方法直接证明和间接证明,及间接证明的重要方法之反证法;能够用直接法和间接法证明一些基本的数学问题.2.过程与方法通过对实例的分析,归纳和总结的过程,培养数学理性思维能力;通过实际演练,体会综合法、分析法、反证法的证明过程及两种证明方法的特点3情感、态度与价值观通过实际参与,激发学习数学的兴趣,在学习过程中感受逻辑证明在数学已经日常。

20、 1 题型一:综合法 【例1】若 11 0 ab ,则下列结论不正确的是 ( ) 22 ab 2 abb 2 ba ab abab 【考点】综合法 【难度】2 星 【题型】选择 【关键词】无 【解析】 取2a ,3b 代入可得。 【答案】D。 【例2】如果数列 n a是等差数列,则( ) 。 (A) 1845 aaaa (B) 1845 aaaa (C) 1845 aaaa (D) 1845 a aa a 【考点】综合法 【难度】2 星 【题型】选择 【关键词】无 【解析】 由等差数列的性质:若mnpq 则 qpnm aaaa 【答案】 (B) 。 【例3】在ABC中若2 sinbaB,则 A 等于( ) (A)30或 60 (B)45或 60 (C)60或 120 (D)30或 150 【考点。

【证明与反驳】相关PPT文档
第一章 推理与证明 章末复习ppt课件
【证明与反驳】相关DOC文档
高考数学讲义推理与证明.参考教案.教师版
高考数学讲义推理与证明.复习题
高考数学讲义推理与证明.测试题
高考数学讲义推理与证明.知识框架
标签 > 证明与反驳[编号:175442]