浙教版八年级数学下册1.1二次根式同步练习含答案

2.2 一元二次方程的解法(3)A 练就好基础 基础达标1用配方法解方程 2x24x 30,配方正确的是( D )A2x 24x434B2x 2 4x434Cx 2 2x1 132Dx 22x1 1322把方程 2x24x 10 化为(xm) 2 的形式,则 m 的值是( B )32A2 B1 C

浙教版八年级数学下册1.1二次根式同步练习含答案Tag内容描述:

1、2.2 一元二次方程的解法(3)A 练就好基础 基础达标1用配方法解方程 2x24x 30,配方正确的是( D )A2x 24x434B2x 2 4x434Cx 2 2x1 132Dx 22x1 1322把方程 2x24x 10 化为(xm) 2 的形式,则 m 的值是( B )32A2 B1 C 1 D23用配方法解方程 2x2x 10 时,配方结果正确的是( D )A. B. (x 12)2 34 (x 14)2 34C. D. (x 14)2 1716 (x 14)2 9164若 9x2ax4 是一个完全平方式,则 a 等于( C )A12 B12C12 或12 D6 或65把方程 2x212x 110 化为(xm) 2n 的形式,结果为_( x3) 2 _2926将下列各式配方:(1)4y212y_9_(2 y_3_) 2;(2)2x210x2(x_ _)2。

2、2.2 一元二次方程的解法(1)A 练就好基础 基础达标1一元二次方程 x(x2)0 的根是( D )Ax0 Bx 2Cx 1 1,x 22 Dx 10 ,x 222方程 x24x40 的解是( C )Ax4 Bx 4Cx 1 x22 Dx 12,x 223方程(x1) 2x 1 的正确解法是( B )A化为 x11B化为(x1)(x11) 0C化为 x23 x20D化为 x104已知(x1)(x4)x 23x4,则方程 x23x40 的两根是 ( B )Ax 11,x 24 Bx 11,x 24Cx 1 1,x 24 Dx 11 ,x 245一个分式 的值为 0,则 x 的值为( A )x2 1x 1A1 B1C1 D06一元二次方程(x1) 23(x1)的解是( D )Ax0 Bx 10,x 2 1Cx 2 Dx 11,x 2 27若。

3、2.2 一元二次方程的解法(2)A 练就好基础 基础达标1方程 x23 的根是( C )13A3 B3 C3 D12一元二次方程(x6) 216 可转化为两个一元一次方程,其中一个是 x64,则另一个是( D )Ax64 Bx 64Cx 64 Dx 643用配方法解下列方程,其中应在左右两边同时加上 4 的是( D )Ax 22x5 Bx 28x4Cx 2 2x5 D. x24x34用配方法解一元二次方程 x24x5 的过程中,配方正确的是( D )A(x 2)21 B(x2) 21C(x2) 29 D(x2) 295方程(x1) 22 的根是( C )A1 或 3 B1 或3C1 或 1 D. 1 或 12 2 2 26把方程 x24x 30 化为(xm) 2n 的形式,则 m,n 的值分别为( C )A2,1 B1,2C2,1 D2。

4、2.2 一元二次方程的解法(4)A 练就好基础 基础达标1方程 x22x20 的根的情况是( C )A有两个相等实数根B无实数根C有两个不相等的实数根D无法确定 2下列一元二次方程中,无实数根的方程是( B )Ax 23x10 B(2x1) 210Cx 2 2x10 Dx (x 1)33如果一元二次方程 ax2bxc 0( a0)能用公式法求解,那么必须满足的条件是( A )Ab 24ac0 Bb 24ac0Cb 24ac0 Db 24ac04一元二次方程 x2x 10 的两个实数根中较大的根是( B )A1 B.51 52C. D.1 52 1 525已知关于 x 的一元二次方程 mx22x10 有两个不相等的实数根,则 m 的取值范围是( D )Am1 Bm1 Cm1 且 m0 Dm 1 且 m0。

5、2.3 一元二次方程的应用(1)A 练就好基础 基础达标1某文具店三月份销售铅笔 100 支,四、五两个月销售量连续增长,若月平均增长率为x,则该文具店五月份销售铅笔的支数是( B )A100(1x) B100(1x) 2C100(1x 2) D100(12x)2某超市一月份的营业额为 36 万元,三月份的营业额为 48 万元,设每月的平均增长率为x,则可列方程( D )A48(1x) 2 36 B48(1x) 2 36C36(1x) 2 48 D36(1x) 2 4832018绵阳在一次酒会上,每两人都只碰一次杯,如果一共碰杯 55 次,则参加酒会的人数为( C )A9 B10C11 D12【解析】 设参加酒会的人数为 x,根据题意,得 x(x1)55,。

6、第 5 章 二次根式1下列运算正确的是( )A. B2 3 62 3 5 2 2 2C. 2 D3 38 2 2 22下列式子为最简二次根式的是 ( )A. B. C. D.5 12 a21a3关于 的叙述正确的是 ( )8A在数轴上不存在表示 的点8B. 8 2 6C. 28 2D与 最接近的整数是 384计算 ( )的结果为( )(515 245) 5A5 B5 C 7 D75实数 a,b 满足 4a 24abb 20,则 ba的值为( )a 1A2 B. C 2 D12 126若一个长方体的长为 2 cm,宽为 cm,高为 cm,则它的体积为( )6 3 2A10 cm 3 B12 cm 3 C14 cm 3 D16 cm 37计算 2 。

7、5.2 二次根式的乘法和除法同步测试一、选择题1.下列二次根式中,最简二次根式的是( ) A. B. C. D. 2.下列式子为最简二次根式的是( ) A. B. C. D. 3.下列式子中,属于最简二次根式的是( ) A. B. C. D. 4.下列二次根式中,与 之积为无理数的是( ) A. B. C. D. 5.下列根式是最简二次根式的是( ) A. B. C. D. 6.下列各式是最简二次根式的是( ) A.。

8、第 2 章 一元二次方程2.1 一元二次方程A 练就好基础 基础达标1下列方程中,属于一元二次方程的是( C )A2x10 By 2x1Cx 2 10 D. x 211x2方程(m2)x 23mx 1 0 是关于 x 的一元二次方程,则( D )Am2 Bm2Cm2 Dm2 3把一元二次方程(x2)( x3) 4 化成一般形式,得( C )Ax 2x100 Bx 2x64Cx 2 x100 Dx 2x604将方程 3x216x 化为一元二次方程的一般形式,其中二次项系数为 3,则一次项系数、常数项分别是( A )A6,1 B6,1C6,1 D6,15下列关于一元二次方程 x23x1 的各项系数的说法不正确的是( C )A二次项系数为 1 B一次项系数为3C常数项为1 D一次项为3x6。

9、章末复习课考点 1 二次根式的定义及有意义的条件1使根式 有意义的 a 的取值范围是_a1_11 a2使代数式 有意义的 x 的取值范围是_x 且 x2_1 2xx 2 123若 y ,则 xy_1_x 3 3 x134若|a 2| 0,则 a22b_2_b 3考点 2 二次根式的性质及化简5下列运算正确的是( D )A( )25 B. 518 22C 5 D. 3( 5)2 322 26下列各组二次根式中,化简后被开方数相同的一组是( B )A. 和 B. 和3 9 24 54C. 和 D. 和18 3212 57下列根式中,属于最简二次根式的是( A ) A. B.a2 112C. D.8128(1)计算 |8| ,正确的结果是_8_;82 ( 8)2(2)计算 的值为_ _3225 3289化简:(1) 。

10、专题分类突破一 二次根式的化简与运算类型 1 二次根式的化简【例 1】 直接写出下列根式化简后的结果:_ _, _ _,0.1235 134 72_ _, _ 2_2 62 2 3 13 2 3变式 已知 x,y 为实数,且 y3(x 1), )解:解不等式,得 x1 ,2解不等式,得 x1,所以不等式组的解为1 x1.2故满足条件的整数解有2,1,0.。

11、第16章 二次根式随堂检测1、下列各式有意义的范围是x3的为( )A B C D2、计算(+)(-)的值是( )A1 B2 C3 D43、的值( )A.是正数 B.是负数 C.是非负数 D.可为正也可为负4、已知y0,化简=_5、比较大小:典例分析观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:=-1,=-,同理可得:=-,从计算结果中找出规律,并利用这一规律计算:(+)(+1)的值分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的解:原式=(-1+-+-+-)(+1)=(-1)(+1)=2009-1=2008.课下作业拓。

12、人教版数学八年级下册 第十六章二次根式 同步练习1、选择题1.在下列各式中, m 的取值范围不是全体实数的是( B )A B C D1)2(1)2(2)1(m2)1(m2.(2018 湖南怀化中考)使 有意义的 x 的取值范围是( C )x3.x3 . .3 .x33.计算 的结果为( B )214A.-1 B.1 C. D.12124.下列各数中,与 的积为无理数的是( B )2A. B. C. D.12118325.小明的作业本上有以下四题: ; ; ; .4216a=5a10=2aA21=aA8a2=4其中做错的题是( D )A. B. C. D.6.若 有意义,则点 A(x,y)落在 ( C )1-x-y+ 13xyA. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 7. 若等腰三角形两边长。

13、阶 段 性 测 试(二)考查范围:第 1 章 1.11.3 总分:100 分一、选择题(每小题 6 分,共 30 分)1计算 的结果是( B )8 2A. B4 C. D 210 62下列各式计算正确的是( D )A. B4 3 12 3 5 3 3C2 3 6 D. 33 3 3 27 33能使等式 成立的 x 的取值范围是( C )xx 2 xx 2Ax2 Bx 0Cx 2 Dx 24下列各式中,与(2 )的积为有理数的是( D )3A2 B2 3 3C2 D23 35要焊接一个如图所示的钢架,需要的钢材长度是( A ) A(3 7)m B(5 7)m5 3C(7 3)m D(3 5)m5 7二、填空题(每小题 5 分,共 25 分)6计算: _ _8 2 27计算:( 1) 2_42 _3 38一个斜坡与水平方向的夹角是 30,则。

14、5.1 二次根式同步测试一、选择题1.若二次根式 有意义,则 x 的取值范围是()A. x 1 B. x1 C. x36.化简 的正确结果是( )A. (m 5 ) B. (5m) C. m5 D. 5m 7.计算 等于( )A. 45 B. 55 C. 66 D. 708.下列四个等式: =4;( ) 2=16;( ) 2=4; =4正确的是( )A. B. C. D. 9. 实数范围内有意义,则 x 的取值范围是( )A. x 1 B. x1 C. x1 D. x110.下列变形中,正确的是( )A. (2 ) 2=23=6 B. C. D. 二、填空题11.若二次根式 有意义,则 x 的取值范围是_12.若二次根式 并可有意义,则 x 的取值范。

15、1.3 二次根式的运算(2)A 练就好基础 基础达标1计算 3 2 的结果是( A )5 5A. B25 5C3 D652计算 的结果是( B )12 3A3 B. 3C2 D33 33已知二次根式 与 可以合并成一项,则 a 的取值不可能是( D )a 2A. B212C8 D124计算 3 的结果是( C )2 18A3 B 520 2C6 D42 205已知 a ,b ,则 a 与 b 的关系是( C )12 1 12 1A相等 B互为相反数C互为倒数 D平方值相等6计算 的结果是 ( C )27 823A. B.3433C. D2533 37下列各式计算正确的是( D )A3 2 1 B. 12 2 2 3C. D. 77 2 5 72 2 28下列二次根式,不能与 合并的有_(填写序号即可)12 ; ; ; ; .48 125113 。

16、1.2 二次根式的性质(1)A 练就好基础 基础达标1化简 的正确结果是( A )( 10)2A10 B100 C 10 D1002. ( D )(2 2)2A0 B2C. 2 D 22 23计算 |11| 的正确结果是( B )( 11)2 112A11 B11C22 D224若 4,则 x 的值为( D )x2A2 B2 C16 D45下列结论不正确的是( B )A. |a2| (a 2)2B当 a2 时, 2a( a 2)2C当 a2 时, a2(a 2)2D当 a2 时, 2a(a 2)26如果 1a,那么( B )(a 1)2Aa1 Da 17下列式子正确的是( B )A. 9 B ( )2332 3C. 2 D( )29( 2)2 38化简 ( )2,下面四个选项中,你认为解答正确的是( C )(x 3)2 2 xA原式(x 3)(2。

17、1.3 二次根式的运算(1)A 练就好基础 基础达标1化简 的结果是( A )545A2 B. C. D.25 2 252下列二次根式中,属于最简二次根式的是( A )A. B. C. D.3 12 18 543下列计算中正确的是( C )A2 3 6 B(5 )2255 5 5 5C. 4 D3 2 612 8 6 2 3 54下列计算中错误的是( C )A. 7 B. 14 7 2 60 30 2C. 9 D. 3 6 282a 2aa5已知 a, b,则 等于( C ) 7 70 10Aab BbaC. Dabba6下列把有理数与二次根式的乘积化成一个二次根式,其中正确的有_(填序号)9 ;5 325 454 ;3 423 163 483 ;2 .2 32 2 92 18。

18、1.3 二次根式的运算(3)A 练就好基础 基础达标1若直角三角形一锐角为 30,则它的三边之比可能是( B )A123B12 3C1 2 3D11 22河堤横断面如图所示,堤高 BC5 m ,迎水坡 AB 的坡比是 1 ,则 AC 的长是( A )3A5 m B10 m 3C15 m D20 m3一块正方形的瓷砖,面积为 50 cm2,它的边长大约在( D )A45 cm 之间 B56 cm 之间C67 cm 之间 D78 cm 之间4如图所示,小正方形边长为 1,连结小正方形的三个顶点可得ABC,则 AC 边上高的长是( C )A. B.322 3105C. D.355 45552018枣庄我国南宋著名数学家秦九韶在他的著作 数书九章一书中,给出了著名的秦九韶公式。

19、1.2 二次根式的性质(2)A 练就好基础 基础达标1下列式子中,属于最简二次根式的是( B )A. B.4 11C. D.18152化简 的结果是( B )40A20 B2 10C2 D45 103若直角三角形的两条直角边长分别为 cm 和 cm,那么此直角三角形的斜边长是( 13 14B )A3 cm B3 cm2 3C9 cm D27 cm4计算 的结果是( B )( 5)23A5 B 53 3C5 D3035若 ( )2,则 x 的取值范围是( B )( x 5)2 5 xAx5 Bx5Cx 5 Dx 56下列式子中,错误的是( B )A. 42 8B. ( 4)( 9) 4 9C. 43 233D. 2 4925 4 925 35 657化简: _3 _, _2 _,18 2 20 5 _2 _, _。

20、第 1 章 二次根式1.1 二次根式A 练就好基础 基础达标1下列代数式能作为二次根式的被开方数的是( C )A3 Ba(a0)Ca 21 D(x 2) 2(x2)2二次根式 中字母 a 的取值范围是( B )a 3Aa3 Ba3Ca3 Da33使 有意义的 x 的取值范围是 ( A )1x 1Ax1 Bx 1Cx 1 Dx 14下列四个式子中,x 的取值范围为 x2 的是( C )A. B.1x 2 1x 2C. D.x 2 2 x5若代数式 在实数范围内有意义,则 x 的取值范围是( C )1x2Ax0 Bx0Cx 0 Dx 为任意实数6二次根式 (a0)是( D )aA正数 B负数C0 D非负数7已知一个直角三角形两条直角边的长分别是 a 和 3,则斜边长是_ _;已知一个a2 9圆的。

【浙教版八年级数学下册1.1二】相关DOC文档
标签 > 浙教版八年级数学下册1.1二次根式同步练习含答案[编号:108948]