7.3 二元一次不等二元一次不等式式(组组)与简与简单的线性规划问题单的线性规划问题 最新考纲 考情考向分析 1.会从实际情境中抽象出二元一次不等 式组 2.了解二元一次不等式的几何意义,能用 平面区域表示二元一次不等式组 3.会从实际情境中抽象出一些简单的二 元一次线性规划问题,并能加以解决.
习题课简单的线性规划 学案含答案Tag内容描述:
1、 7.3 二元一次不等二元一次不等式式(组组)与简与简单的线性规划问题单的线性规划问题 最新考纲 考情考向分析 1.会从实际情境中抽象出二元一次不等 式组 2.了解二元一次不等式的几何意义,能用 平面区域表示二元一次不等式组 3.会从实际情境中抽象出一些简单的二 元一次线性规划问题,并能加以解决. 以画二元一次不等式(组)表示的平面区域、目 标函数最值的求法为主,兼顾由最优解(可行 域)情况确定参数的范围,以及简单线性规划 问题的实际应用,加强转化与化归和数形结 合思想的应用意识本节内容在高考中以选 择、填空题的形式进行考查,。
2、4.2简单线性规划第1课时线性规划的有关概念及图解法一、选择题1若点(x,y)位于曲线y|x|与y2所围成的封闭区域内,则2xy的最小值为()A6 B2C0 D2考点线性目标最优解题点求线性目标函数的最值答案A解析如图,曲线y|x|与y2所围成的封闭区域如图中阴影部分(含边界)所示,令z2xy,则y2xz,作直线y2x,在封闭区域内平行移动直线y2x,当经过点A(2,2)时,z取得最小值,此时z2(2)26.2若变量x,y满足约束条件则xy的最大值为()A9 B.C1 D.考点线性目标最优解题点求线性目标函数的最值答案A解析画出可行域如图阴影部分(含边界)所示,令zxy,则yxz.当直线y。
3、第2课时线性规划思想的拓展一、选择题1已知a,b是正数,且满足2a2b4,那么的取值范围是()A. B.C. D.考点非线性目标函数的最值问题题点求斜率型目标函数的最值答案A解析画出不等式组表示的平面区域,得可行域如图中阴影部分所示(不含边界)的几何意义是平面区域内的点M(a,b)与点P(1,1)连线的斜率,由图易得,kPAkPMkPB,又kPB3,kPA,因为a,b是正数,所以3.2若x,y满足约束条件目标函数zax2y仅在点(1,0)处取得最小值,则a的取值范围是()A(1,2) B(4,2)C(4,0 D(2,4)考点线性规划中的参数问题题点线性规划中的参数问题答案B解析画出可。
4、第2课时整数线性规划和非线性规划问题一、填空题1在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇现有4辆甲型货车和8辆乙型货车可供使用每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台若每辆车至多只运一次,则该厂所花的最少运输费用为_元考点线性规划中的整点问题题点线性规划中的整点问题答案2 200解析设需使用甲型货车x辆,乙型货车y辆,运输费用z元,根据题意,得线性约束条件求线性目标函数z400x300y的最小值,可行域如图阴影部分(含边界)所示,解得当时,z有最小值,且zmin2 20。
5、4.3简单线性规划的应用学习目标1.体会用线性规划的方法解决实际问题的过程.2.了解整数点最优解的求法.知识点一线性规划在实际中的应用解答线性规划应用题的一般步骤(1)审题仔细阅读,对关键部分进行“精读”,准确理解题意,明确有哪些限制条件,起关键作用的变量有哪些,由于线性规划应用题中的量较多,为了理顺题目中量与量之间的关系,有时可借助表格来理顺.(2)转化设元.写出约束条件和目标函数,从而将实际问题转化为数学上的线性规划问题.(3)求解解这个纯数学的线性规划问题.(4)作答就应用题提出的问题作出回答.知识点二整数点最优解。
6、3.3.3简单的线性规划问题第1课时线性规划的有关概念及图解法学习目标1.了解线性规划的意义.2.理解约束条件、目标函数、可行解、可行域、最优解等基本概念.3.掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题引例已知x,y满足条件该不等式组所表示的平面区域如图阴影部分所示,求2x3y的最大值以此为例,尝试通过下列问题理解有关概念知识点一线性约束条件及目标函数1在上述问题中,不等式组是一组对变量x,y的约束条件,这组约束条件都是关于x,y的一次不等式,故又称线性约束条件2在上述问题中,是要研究的目标,称为目标函数。
7、第2课时整数线性规划和非线性规划问题学习目标1.了解实际线性规划中的整数解求法.2.会求一些简单的非线性规划的最优解知识点一整数线性规划思考设x代表人数,y代表车辆数,那么(x,y)的可行解能是吗?答案不行此处xN,yN.梳理对于有实际背景的线性规划问题,要求变量取整数的线性规划称为整数线性规划知识点二非线性约束条件思考类比探究二元一次不等式表示平面区域的方法,画出约束条件(xa)2(yb)2r2的可行域答案梳理非线性约束条件的概念:约束条件不是二元一次不等式,这样的约束条件称为非线性约束条件知识点三非线性目标函数思考在问。
8、习题课简单的线性规划基础过关1.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为()A.2000元B.2200元C.2400元D.2800元答案B解析设需使用甲型货车x辆,乙型货车y辆,运输费用z元,根据题意,得线性约束条件求线性目标函数z400x300y的最小值,解得当时,zmin2200(元).2.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对。
9、习题课简单的线性规划学习目标1.加深对二元一次不等式组及其几何意义的了解.2.能熟练地用平面区域表示二元一次不等式组.3.准确利用线性规划知识求解目标函数的最值.4.会求一些简单的非线性函数的最值.预习导引1.二元一次不等式的几何意义对于任意的二元一次不等式AxByC0(或0时,(1)AxByC0表示直线AxByC0上方的区域;(2)AxByC0表示直线AxByC0下方的区域.2.用图解法解线性规划问题的步骤:(1)确定线性约束条件;(2)确定线性目标函数;(3)画出可行域;(4)利用线性目标函数(直线)求出最优解.3.线性规划在实际问题中的题型主要掌握两种类型:一。