专题17 图形的变化之解答题(14道题) 参考答案与试题解析 一解答题(共14小题) 1(2019门头沟区二模)如图,在等边三角形ABC中,点D为BC边上的一点,点D关于直线AB的对称点为点E,连接AD、DE,在AD上取点F,使得EFD60,射线EF与AC交于点G (1)设BAD,求AGE的度数(
图形的性质之解答题150道题解析版Tag内容描述:
1、专题17 图形的变化之解答题(14道题)参考答案与试题解析一解答题(共14小题)1(2019门头沟区二模)如图,在等边三角形ABC中,点D为BC边上的一点,点D关于直线AB的对称点为点E,连接AD、DE,在AD上取点F,使得EFD60,射线EF与AC交于点G(1)设BAD,求AGE的度数(用含的代数式表示);(2)用等式表示线段CG与BD之间的数量关系,并证明【答案】解:(1)ABC是等边三角形,BAC60,BAD,FAG60,AFGEFD60,AGE18060(60)60+;(2)CG2BD,理由是:如图,连接BE,过B作BPEG,交AC于P,则BPCEGP,点D关于直线AB的对称点为点E,ABEABD60,C60,。
2、专题12 图形的性质之解答题(1)(50道题)一解答题(共50小题)1(2019北京)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,ABC的平分线交图形G于点D,连接AD,CD(1)求证:ADCD;(2)过点D作DEBA,垂足为E,作DFBC,垂足为F,延长DF交图形G于点M,连接CM若ADCM,求直线DE与图形G的公共点个数2(2019北京)已知AOB30,H为射线OA上一定点,OH1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足OMP为钝角,以点P为中心,将线段PM顺时针旋转150。
3、专题14 图形的性质之解答题(3)(45道题)一解答题(共45小题)1(2019顺义区一模)已知:如图,AB是O的直径,点C是O上一点,点P在AB的延长线上,且AP30(1)求证:PC是O的切线;(2)连接BC,若AB4,求PBC的面积2(2019海淀区一模)如图,在四边形ABCD中,ABCD,ABBC2CD,E为对角线AC的中点,F为边BC的中点,连接DE、EF(1)求证:四边形CDEF为菱形;(2)连接DF交AC于点G,若DF2,CD,求AD的长3(2019顺义区一模)已知:如图,四边形ABCD是矩形,ECDDBA,CED90,AFBD于点F(1)求证:四边形BCEF是平行四边形;(2)若AB4,AD3,求EC的。
4、专题13 图形的性质之解答题(2)(50道题)一解答题(共50小题)1(2019怀柔区二模)如图,E为AB中点,CEAB于点E,AD5,CD4,BC3,求证:ACD902(2019西城区二模)如面是小东设计的“作平行四边形一边中点”的尺规作图过程已知:平行四边形ABCD求作:点M,使点M为边AD的中点作法:如图,作射线BA;以点A为圆心,CD长为半径画弧,交BA的延长线于点E;连接EC交AD于点M所以点M就是所求作的点根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明证明:连接AC,ED四边形ABCD是平行四边形,AECDAE。
5、专题12图形的性质之解答题参考答案与试题解析一解答题(共31小题)1(2019南京)如图,D是ABC的边AB的中点,DEBC,CEAB,AC与DE相交于点F求证:ADFCEF【解答】证明:DEBC,CEAB,四边形DBCE是平行四边形,BDCE,D是AB的中点,ADBD,ADEC,CEAD,AECF,ADFE,ADFCEF(ASA)【点睛】本题主要考查了平行四边形的判定与性质以及全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等2(2019无锡)如图,在ABC中,ABAC,点D、E分别在AB、AC上,BDCE,BE、CD相交于点O(1)求证:DBCECB;(2)求证:OBOC【解答】(1)证明:ABAC,ECBDBC。
6、专题10 图形的性质之解答题参考答案与试题解析一解答题(共23小题)1(2019舟山)如图,在矩形ABCD中,点E,F在对角线BD请添加一个条件,使得结论“AECF”成立,并加以证明【答案】解:添加的条件是BEDF(答案不唯一)证明:四边形ABCD是矩形,ABCD,ABCD,ABDBDC,又BEDF(添加),ABECDF(SAS),AECF【点睛】本题考查矩形的性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型2(2019温州)如图,在ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CFAB交ED的延长线于点F(1)求证:BDE。
7、专题专题 12 图形的性质之解答题图形的性质之解答题 参考答案与试题解析参考答案与试题解析 一解答题(共一解答题(共 50 小题)小题) 1 (2018上海)已知O 的直径 AB2,弦 AC 与弦 BD 交于点 E且 ODAC,垂足为点 F (1)如图 1,如果 ACBD,求弦 AC 的长; (2)如图 2,如果 E 为弦 BD 的中点,求ABD 的余切值; (3)联结 BC、CD、DA,如果 。
8、专题12 图形的性质之解答题(1)(50道题)参考答案与试题解析一解答题(共50小题)1(2019北京)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,ABC的平分线交图形G于点D,连接AD,CD(1)求证:ADCD;(2)过点D作DEBA,垂足为E,作DFBC,垂足为F,延长DF交图形G于点M,连接CM若ADCM,求直线DE与图形G的公共点个数【答案】(1)证明:到点O的距离等于a的所有点组成图形G,图形G为ABC的外接圆O,AD平分ABC,ABDCBD,ADCD;(2)如图,ADCM,ADCD,C。
9、专题14 图形的性质之解答题(3)(45道题)参考答案与试题解析一解答题(共45小题)1(2019顺义区一模)已知:如图,AB是O的直径,点C是O上一点,点P在AB的延长线上,且AP30(1)求证:PC是O的切线;(2)连接BC,若AB4,求PBC的面积【答案】(1)证明:连接OC,OAOC,1A,又AP30,130,ACP120,OCP90,PC是O的切线;(2)解:AB4,OAOBOC2,OCP90,P30,OP4,PC2,BPOB,SOPC【点睛】本题考查了切线的判定和性质,圆周角定理,三角形的面积的计算,熟练掌握切线的判定定理是解题的关键2(2019海淀区一模)如图,在四边形ABCD中,ABCD,AB。
10、专题13 图形的性质之解答题(2)(50道题)参考答案与试题解析一解答题(共50小题)1(2019怀柔区二模)如图,E为AB中点,CEAB于点E,AD5,CD4,BC3,求证:ACD90【答案】证明:E为AB中点,CEAB于点E,ACBC,BC3,AC3,又AD5,CD4,AC2+CD2AD2,ACD90,【点睛】本题考查了勾股定理的逆定理,等腰三角形的性质,正确的识别图形是解题的关键2(2019西城区二模)如面是小东设计的“作平行四边形一边中点”的尺规作图过程已知:平行四边形ABCD求作:点M,使点M为边AD的中点作法:如图,作射线BA;以点A为圆心,CD长为半径画弧,交BA的延长线于。
11、专题专题 17 图形的变化之解答题(图形的变化之解答题(1) 参考答案与试题解析参考答案与试题解析 一解答题(共一解答题(共 50 小题)小题) 1 (2019上海)图 1 是某小型汽车的侧面示意图,其中矩形 ABCD 表示该车的后备箱,在打开后备箱的过 程中,箱盖 ADE 可以绕点 A 逆时针方向旋转,当旋转角为 60时,箱盖 ADE 落在 ADE的位置(如 图 2 所示) 已知 AD90 厘。