数轴与绝对值试题

第 6 课时 绝对值与相反数(2)【基础巩固】1如果 ,则 x_x52比较下列每组数的大小,用“” “”或“” “”或“0 Ba ,用数轴上的点来表示 a、b,下a图正确的是 ( )16点 A1、A 2、A 3、A n(n 为正整数) 都在数轴上,点 A1 在原点 O 的左边,且A1A101;点 A

数轴与绝对值试题Tag内容描述:

1、第 6 课时 绝对值与相反数(2)【基础巩固】1如果 ,则 x_x52比较下列每组数的大小,用“” “”或“” “”或“0 Ba ,用数轴上的点来表示 a、b,下a图正确的是 ( )16点 A1、A 2、A 3、A n(n 为正整数) 都在数轴上,点 A1 在原点 O 的左边,且A1A101;点 A2 在点 A1 的右边,且 A2A12;点 A3 在点 A2 的左边,且 A3A23;点A4 在点 A3 的右边,且 A4A34,依照上述规律,点 A2012、A 2013 所表示的数分别为 ( )A2 012,2 013 B2 012,2 013 C1 006,1007 D1006,100617点 A、B 分别是数3、 12在数轴上对应的点,使线段 AB 沿数轴向右移动到。

2、小明家在学校正西方3 km处,小丽家在学校正东方2 km处,他们上学所花的时间,与各家到学校的距离有关,你会用数轴上的点表示学校、小明家、小丽家的位置吗?,小明家,学校,小丽家,A,O,B,1画数轴,用数轴的原点O表示学校的位置,规定向东为正,数轴上的1个单位长度表示1km; 2设点A、点B分别表示小明家、小丽家,则点A在原点O左侧且到原点O的距离为3个单位长度,点B在原点O右侧且到原点O的距离为2个单位长度,做一做,数轴上表示一个数的点与原点的距离叫做这个数的绝对值,请你结合数轴,根据定义说出 3、2、0的绝对值,你能说出数轴上的点A、B。

3、根据绝对值与相反数的意义填空:,(2) _,10.5的相反数是 _;,_,5的相反数是_;,_, 的相反数是_;,(3) _,2.3,6,5,5,10.5,10. 5,0,试一试,一个数的绝对值与这个数本身或它的相反数有什么关系?正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0,议一议,例5 求下列各数的绝对值:,解:,当a是正数时,a的绝对值是它本身, 即当a0时,|a|a; 当a是0时,a的绝对值是0, 即当a0时,|a|0 ; 当a是负数时,a的绝对值是它的相反数, 即当a0时,|a|a ,两个正数中,绝对值大的那个数一定大吗? 两个负数呢?,两个正数,绝对值大的正数大。

4、1.3 绝对值与相反数一、选择题 1.如果甲数的绝对值大于乙数的绝对值,那么( ) A. 甲数必定大于乙数 B. 甲数必定小于乙数C. 甲乙两数一定异号 D. 甲乙两数的大小根据具体值确定2.下列各组数中互为相反数的是( ) A. -2 与 B. -2 与 C. 2 与 D. 与2() 2()|2|3.一个数的相反数是非负数,这个数是( ) A. 负数 B. 非负数 C. 正数 D. 非正数4. 的绝对值是( ) 15A. 。

5、 第 1 页 共 5 页 绝对值与相反数(提高)绝对值与相反数(提高) 【学习目标】【学习目标】 1借助数轴理解绝对值和相反数的概念; 2知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系; 3会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小; 4 通过应用绝对值解决实际问题,体会绝对值的意义和作用 【要点梳理】【要点梳理】 要点一、相反数要点一、相反数 1 1定义:定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数特别地,0 的相反数是 0 要点诠释:要点诠释: (1)“只”字是说仅仅。

6、 第 1 页 共 6 页 绝对值绝对值与与相反数相反数(基础)(基础) 【学习目标】【学习目标】 1借助数轴理解绝对值和相反数的概念; 2知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系; 3会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小; 4通过应用绝对值解决实际问题,体会绝对值的意义和作用 【要点梳理】【要点梳理】 要点一、要点一、相反数相反数 1 1定义:定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数特别地,0 的相反数是 0 要点诠释:要点诠释: (1) “只”字是说仅仅。

7、 第 1 页 共 3 页 【巩固练习】【巩固练习】 一、选择题一、选择题 1一个数比它的相反数小,这个数是( ) A正数 B负数 C非正数 D非负数 2如果0ab,那么, a b两个数一定是( ) A都等于 0 B一正一负 C互为相反数 D互为倒数 3下列判断中,正确的是( ) A如果两个数的绝对值相等,那么这两个数相等; B如果两个数相等,那么这两个数的绝对值相等; C任何数的绝对值都是正数; D如果一个数的绝对值是它本身,那么这个数是正数 42010 年 12 月某日我国部分城市的平均气温情况如下表(记温度零上为正,单位) 城市 温州 上海 北京 哈尔滨 广州 平。

8、 第 1 页 共 3 页 【巩固练习】【巩固练习】 一、选择题一、选择题 1一个数的相反数是非负数,则这个数一定是( ) A正数 B负数 C非正数 D非负数 2在+(+1)与-(-1) ;-(+1)与+(-1) ;+(+1)与-(+1) ;+(-1)与-(-1)中, 互为相反数的是( ) A B C D 3满足|x|-x 的数有( ) A1 个 B2 个 C3 个 D无数个 4已知 1 | 3| a ,则 a 的值是( ) A3 B-3 C 1 3 D 1 3 或 1 3 5a、b 为有理数,且 a0、b0,|b|a,则 a、b、-a、-b 的大小顺序是( ) Ab-aa-b B-aba-b C-ba-ab D-aa-bb 6下列推理:若 ab,则|a|b|;若|a|b|,则 ab;若 ab,则|a|。

9、符号表示,2.3,5,10.5,小试牛刀:,说出下列各式的意义并化简:,6,5,10.5,0,一个数的绝对值与这个数 本身或它的相反数有什么关系?,想一想:,0,1.填空:,(1) 的符号是 ,绝对值是 ;,(2) 10.5 的符号是 ,绝对值是 ;,(4) 绝对值是9的数是 ;,(3) 绝对值为 的数是 ;,(5) 绝对值是0.37的数是 ;,例1.,比较-9.5与-1.75的大小。,解:, -9.5 =,9.5,-1.75 =,1.75,9.5,1.75, -9.5 -1.75,两个负数,绝对值大的反而小。,先判正负,再用法则。,2.比较下列各组数的大小:,(1)-12.3 -12,(3) -8 -8,(2)-(-2.75) -(-。

10、1,1.3 绝对值与相反数,2,自主阅读教学目标,1分钟,3,知识回顾,1分钟,4,独立完成自主探究,5分钟,5,在数轴上标出下列各数的点-2 0 4,-2,4,0,6,在数轴上,表示一个数的点到_叫做这个数的绝对值。,原点的距离,齐读一遍,绝对值几何意义,7,自主完成例1找同学到黑板画,两分钟,8,自主完成练一练,9,师生合作,考考你测试一下你的能力下列各组数有哪些相同点和不同点,请说说你的想法。(1)4 -4 (2) 3 -3 (3) 2.5 -2.5像这样只有 不同 相等的两个数,我们称其中一个数是另一个数的相反数,也称这两个数互为相反数。相反数表示两个数的相互关系,不能。

11、2.4 绝对值与相反数(第 1 课时) (同步测试)同步检测1一个数的绝对值就是在数轴上表示_2_的绝对值是它的本身,_ 的绝对值是它的相反数31 的相反数的绝对值为_ _,1 的绝对值的相反数为_24绝对值等于 5的数有_个,它们是_5 绝对值小于 3的整数有_6绝对值不大于 3的整数有_7绝对值不大于 3的非负整数有_8判断题:(1)a一定是正数 ( )(2)只有两数相等时 ,它们的绝对值才相等 ( )(3) 互为相反数的两数的绝对值相等 ( )(4)绝对值最小的有理数为零 ( )(5)+(-2)与(-2)互为相反数 ( )(6)数轴 上表示-5 的点与原点的。

12、2.3相反数与绝对值,第二章 有理数,相反数,只有符号不同的两个数,叫做互为相反数,其中一个数是另一个数的相反数,0的相反数是0,互为相反数的数在数轴上有什么特点?,在数轴上,表示互为相反数的两个点分别位于原点的两旁,并且它们与原点的距离相等.,1.分别说出下列各数的相反数-3.5, 7, -8,,3.2,3.2,0,-13,对点导练:,绝对值,在数轴上,表示一个数a的点与原点的距离叫做这个数的绝对值, 记作a.读作a的绝对值.,绝对值有负的吗?,根据绝对值的几何意义,请填空:,2,5,2,0,互为相反数的两个数的绝对值相等,即:|a|=|-a|,绝对值的性质,1.求下。

13、2.3相反数与绝对值,第二章 有理数,相反数,相反数,绝对值,绝对值,根据绝对值的几何意义,请填空:,2,5,2,0,绝对值的 代数意义,根据绝对值的代数意义,请填空:,5,5,2.4,2.4,3,3,0.5,0.5,5,5,2.4,2.4,3,3,0.5,0.5,互为相反数的两个数的绝对值相等,即:|a|=|-a|,2距离原点6个单位长度的点表示的是什么数?,1在数轴上,距离原点3个单位长度的点表示的是什么数?,3或3,6或6,3.一个数的绝对值是3,那么这个数是:,4.一个数的绝对值是6,那么这个数是:,5. 若|x|=3,那么x=,6. 若|x|=6,那么x=,3或3,6或6,3或3,6或6,相反数,绝对值的几何意义,绝对值。

14、 专题二 相反数与绝对值要点归纳1相反数 只有符号 的两个数叫做 相反数,特别地,0 的相反数是 ,除零以外的两个相反数在数轴上,位于原点的 ,且到原点的距离 ,我们称这两个点关于 对称,如果以 a、b互为相反数,则 a+b= _2绝对值一般地,数轴上表示数 a 与原点的距离叫做数 a 的 ,一个正数的绝对值是_ ; 一个负数的绝对值是它的_ _;0 的绝对值是_ _,即3有理数的大小比较:正数 0,0_负数,正数 负数;两个负数,绝对值大的反而_典例讲解经典再现一、相反数的概念只有符号不同的两个数,其中一个数是另一个的相反数,0 的相反数是 0。

15、1.2数轴、相反数和绝对值第1课时数轴1在数轴上,原点及原点左边所表示的数是()A正数 B负数C非负数 D非正数2数轴上的点A到原点的距离是6,则点A表示的数为()A6或6 B6C6 D3或33下图是一个不完整的数轴,请你把它补充完整4指出数轴上A,B,C,D,E各点分别表示什么数?5有几滴墨水滴在数轴上根据图中标出的数值,写出墨迹盖住的整数6据公安部消防局消息,2011年2月2日零点到2月3日上午8点,全国共发生火灾5 945起,直接财产损失1 300余万元在一次高楼救火中,一位消防员搭梯子爬往三楼抢救物品,当他爬到梯子正中一级时,二楼窗口喷出火来,。

16、竞赛讲座 25 绝对值与二次根式绝对值与二次根式 1 绝对值 例 1 (1986 年扬州初一竞赛题)设 T=|x-p|+|x-15|+|x-p-15|,其中 0p15.对 于满足 px15 的 x 的来说,T 的最小值是多少? 解由已知条件可得 T=(x-p)+(15-x)+(p+15-x)=30-x. 当 px15 时,上式中在 x 取最大值时 T 最小;当 x=15 时,T=30-15=1。

17、,苏科数学七年级上册,2.4 绝对值与相反数(2),苏科数学,小明的家在学校西边3km处,小丽的家在学校东 边3km处,如果小丽家在学校东边3km处用“3” 表示,那么小明家可以表示为 请你在下面的数轴上表示出小明和小丽家的位置,苏科数学,(1)在数轴上画出表示5与5,6.1与6.1, 与 的点,(2)观察上述每一对数,你有何发现?观察你所画的点,你有什么发现?,(3)根据你的发现,再写出具有这种特征的数3对,相反数的意义,苏科数学,数轴上点的位置与数的大小,符号不同,绝对值相同的两个数互为相反数,其中一个数叫做另一个数的相反数,苏科数学,。

18、,苏科数学七年级上册,2.4 绝对值与相反数(3),苏科数学,写出2、0、2的相反数和绝对值,苏科数学,根据绝对值与相反数的意义填空:,试一试,_,5的相反数是_;,(2) _,10.5的相反数是 _;,_, 的相反数是_;,(3) _,苏科数学,(2)再分别写出几个有理数的绝对值,试一试,(3)你能尝试总结一个数的绝对值与这个数本身,或与它的相反数之 间有什么关系?,(4)你能尝试表示一个数a的绝对值吗?,苏科数学,(1)两个正数中,绝对值大的那个数一定大吗?,能利用绝对值比较两个有理数的大小吗?,(2)两个负数呢?,苏科数学,一个数的绝对值与这个数。

19、高效提分 源于优学第03讲 有理数、绝对值、数轴温故知新(一)三视图1、简单几何体的三视图主视图:从物体的前面向后面所得的视图-能反映物体的前面形状.俯视图:从物体的上面向下面所得的视图-能反映物体的上面形状.左视图:从物体的左面向右面所得的视图-能反映物体的左面形状.(二)由三视图判断几何体(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:根据主视图。

20、高效提分 源于优学第03讲 有理数、绝对值、数轴温故知新(一)三视图1、简单几何体的三视图主视图:从物体的前面向后面所得的视图-能反映物体的前面形状.俯视图:从物体的上面向下面所得的视图-能反映物体的上面形状.左视图:从物体的左面向右面所得的视图-能反映物体的左面形状.(二)由三视图判断几何体(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:根据主视图。

【数轴与绝对值试题】相关PPT文档
【数轴与绝对值试题】相关DOC文档
标签 > 数轴与绝对值试题[编号:86258]