上海 三角函数

第五章第五章 三角函数三角函数 5.7 三角函数的应用三角函数的应用 本节课选自普通高中课程标准实验教科书数学必修 15.7 节 三角函数的应用,在于加强用三角函数模型刻画周期变化现象的学习.本节教材通过例题,循序渐进地介绍三角函数模型的,1sin221(1cos22)1.3设sin,则sin 2

上海 三角函数Tag内容描述:

1、 第五章第五章 三角函数三角函数 5.7 三角函数的应用三角函数的应用 本节课选自普通高中课程标准实验教科书数学必修 15.7 节 三角函数的应用,在于加强用三角函数模型刻画周期变化现象的学习.本节教材通过例题,循序渐进地介绍三角函数模型的。

2、1sin221(1cos22)1.3设sin,则sin 2等于()A B. C. D答案A解析sin 2cos2sin2121.4已知tan ,则等于()A. B C D.答案D解析tan .5.等于()A2 B. C4 D.答案C解析原式4.二、填空题6若为第三象限角,则_.答案0解析为第三象限角,cos 0,sin 0, 0.7已知56,cosa,则sin _.答案解析(5,6),.又sin2,cos a,sin .8已知,sin 2,则sin_.考点利用简单的三角恒等变换化简求值题点综合运用三角恒等变换公式化简求值答案解析因为12sin2cossin 2,所以。

3、三角函数性质时,常与三角恒等变换结合,加强数形结合思想、函数与方程思想的应用意识题型既有选择题和填空题,又有解答题,中档难度.1用五点法作正弦函数和余弦函数的简图(1)在正弦函数ysin x,x0,2的图象中,五个关键点是:(0,0),(,0),(2,0)(2)在余弦函数ycos x,x0,2的图象中,五个关键点是:(0,1),(,1),(2,1)2正弦、余弦、正切函数的图象与性质(下表中kZ)函数ysin xycos xytan x图象定义域RRxk值域1,11,1R周期性22奇偶性奇函数偶函数奇函数递增区间2k,2k递减区间2k,2k无对称中心(k,0)对称轴方程xkxk无概念方法微思考1正(余)弦曲线相邻两条对称轴之间的距离是多少?相邻两个对称中心的距离呢?提示。

4、y的那个角.知识点二已知余弦值,求角一般地,对于余弦函数ycos x,如果已知函数值y(y1,1,那么在0,上有唯一的x值和它对应,记作xarccos y(1y1,0x).知识点三已知正切值,求角一般地,如果正切函数ytan x(yR)且x,那么对每一个正切值,在开区间内有且只有一个角x,使tan xy,记作xarctan y.题型一已知正弦值,求角例1已知sin,求x.解设xt,则有sin t.当t时,tarcsin,又sin t,所以t是第三、四象限角,且t1arcsin是第四象限角.又sinsin,且arcsin是第三象限角,所以t2arcsin.由正弦函数周期性可知t2kt1或t2kt2(kZ)时,sin x.所以t2karcsin(kZ),或t2karcsin(kZ).因此x的集合为,.反思感悟方程ysin xa,|a|1的解集可写为x|x2karcsi。

5、 1.2 任意角的三角函数任意角的三角函数 12.1 任意角的三角函数任意角的三角函数(一一) 学习目标 1.理解并掌握任意角的三角函数定义.2.借助任意角三角函数的定义理解并掌握 正弦、余弦、正切函数值在各象限内的符号.3.通过对任意角的三角函数定义的理解,掌握终 边相同的角的同一三角函数值相等 知识点一 任意角的三角函数 1单位圆 在直角坐标系中,我们称以原点 O 为圆心,以单位长度为半径的。

6、12.1 任意角的三角函数任意角的三角函数(二二) 学习目标 1.掌握正弦、余弦、正切函数的定义域.2.了解三角函数线的意义,能用三角函数 线表示一个角的正弦、余弦和正切.3.能利用三角函数线解决一些简单的三角函数问题 知识点一 三角函数的定义域 正弦函数 ysin x 的定义域是 R;余弦函数 ycos x 的定义域是 R;正切函数 ytan x 的定 义域是 x xR且xk 2,kZ 。

7、的应用意识题型以选择题为主,低档难度.1.角的概念(1)角的分类(按旋转的方向)角(2)象限角象限角象限角的集合表示第一象限角|k360k36090,kZ第二象限角|k36090k360180,kZ第三象限角|k360180k360270,kZ第四象限角|k360270k360360,kZ(3)终边相同的角所有与终边相同的角,包括本身构成一个集合,这个集合可记为S|k360,kZ.2.弧度制(1)定义:长度等于半径长的圆弧所对的圆心角叫做1弧度的角,正角的弧度数是。

8、专题三专题三 三角函数与解三角形三角函数与解三角形 第二编 讲专题 第第1 1讲讲 三角函数的图象与性质三角函数的图象与性质 考情研析 1.以图象为载体,考查三角函数的最值、单调性、对称 性、周期性 2.考查三角函数式的化简、三角函数的图象和性质、角的求 值,重点考查分析、处理问题的能力,是高考的必考点 1 核心知识回顾核心知识回顾 PART ONE 核心知识回顾核心知识回顾 热点考向探究。

9、或相反,分别把它的长度添上正号或负号,这样所得的数,叫做有向线段的数量,记为AB.4单位圆:圆心在原点,半径等于单位长度的圆知识点二三角函数线图示正弦线角的终边与单位圆交于点P,过点P作PM垂直于x轴,有向线段MP即为正弦线余弦线有向线段OM即为余弦线正切线过点A(1,0)作单位圆的切线,这条切线必然平行于y轴,设它与的终边或其反向延长线相交于点T,有向线段AT即为正切线知识点三正弦、余弦、正切函数的定义域函数名定义域正弦函数R余弦函数R正切函数思考对于任意角,sin ,cos ,tan 都有意义吗?答案由三角函数的定义可知,对于任意角,sin ,cos 都有意义,而当角的终边在y轴上时,任取一点P,其横坐标x都为0,此时无意义,故tan 无意义1正弦线MP也可写成PM.()提示三角函数线是有向线段,端点字母不可颠倒2三角函数线都只能取非负值()提示三角函数线表示的值也可取负值3正弦函数、。

10、c B.cabC.bca D.acb解析asin 30cos 6cos 30sin 6sin 24,bsin 26,csin 25,所以acb.答案D3.函数f(x)sin2 xsin xcos x1的最小正周期是_,最小值是_.解析f(x)sin2xsin xcos x1sin 2x1sin 2xcos 2xsin,所以T,f(x)min.答案4.在ABC中,角A,B,C满足4sin2cos 2B,则角B的大小为_.解析在ABC中,ABC,由4sin2cos 2B,得42cos2B1.cos(AC)cos B,4cos2B4cos B10,即(2cos B1)20,2cos B10,cos B。

11、的值为()A B C. D.答案D解析cos4sin4(cos2sin2)(cos2sin2)cos 212sin21.3化简:等于()A1 B2 C. D1考点利用二倍角公式化简求值题点综合利用二倍角公式化简求值答案B解析2.故选B.4已知sin 2,则cos2等于()A. B. C. D.答案A解析因为cos2,所以cos2.故选A.5已知为锐角,且满足cos 2sin ,则等于()A30或60 B45 C60 D30答案D解析因为cos 212sin2,故由题意,知2sin2sin 10,即(sin 1)(2sin 1)0.因为为锐角,所以sin ,所以30.故选D.二、填空题6sin 6sin。

12、 三角函数的应用及利用三角函数测高 第4讲 适用学科 初中数学 适用年级 初中三年级 适用区域 北师版区域 课时时长(分钟) 120 知识点 1.三角函数的一般应用 2.用三角函数解方位角、视角问题 3.利用三角函数测高 教学目标 1.掌握三角函数的应用 2.掌握利用三角函数解决实际问题 教学重点 能熟练掌握利用三角函数解决实际问题 教学难点 能熟练掌握利用三角函数解决实际问题 。

13、角公式求值例1已知sin ,3,求cos和tan .考点利用简单的三角恒等变换化简求值题点利用半角公式化简求值解sin ,且3,cos .,cos .tan 2.反思感悟利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围(3)选公式:涉及半角公式的正切值时,常用tan ,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正弦、余弦值时,常先利用sin2,cos2计算(4)下结论:结合(2)求值跟踪训练1已知cos ,为第四象限角,则tan 的值为_考点利用简单的三角恒等变换化简求值题点利用半角公式化简求值答案解析方法一因为为第四象限角,所以是第二或第四象限角所以tan 0.所以tan 。

14、分为正角、负角、零角(2)按终边位置不同分为象限角和轴线角(3)终边相同的角:所有与角终边相同的角,连同角在内,可构成一个集合3象限角与轴线角第一象限角的集合为;第二象限角的集合为;第三象限角的集合为;第四象限角的集合为终边与轴非负半轴重合的角的集合为;终边与轴非正半轴重合的角的集合为;终边与轴重合的角的集合为;终边与轴非负半轴重合的角的集合为;终边与轴非正半轴重合的角的集合为;终边与轴重合的角的集合为;终边与坐标轴重合的角的集合为二、弧度制11弧度的角把长度等于半径长的弧所对的圆心角叫做1弧度的角规定:是以角作为圆心角时所对圆弧的长,为半径正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零2弧度制用“弧度”做单位来度量角的单位制叫做弧度制比值与所取的的大小无关,仅与角的大小有关3弧度与角度的换算4弧长公式,其中的单位是弧度,与的单位要统一.角度制下的弧长公式为:(其中为扇形圆心角的角度数).5扇形的面积公式. 角度制下的扇形面积公。

15、1)sin2cos21的变形公式sin21cos2;cos21sin2.(2)tan 的变形公式sin cos_tan_;cos .1sin2cos21.()提示在同角三角函数的基本关系式中要注意是“同角”才成立,即sin2cos21.2sin2cos21.()提示在sin2cos21中,令可得sin2cos21.3对任意的角,都有tan 成立()提示当k,kZ时就不成立4若cos 0,则sin 1.()题型一利用同角三角函数的关系式求值命题角度1已知角的某一三角函数值及所在象限,求角的其余三角函数值例1(1)若sin ,且为第四象限角,则tan 的值为()A. B C. D考点运用基本关系式求三角函数值题点运用基本关系式求三角函数值答案D解析sin ,且为第四象限角,co。

16、又22,则,所以有tan .答案C3.设sin 2sin ,则tan 2的值是_.解析sin 2sin ,cos ,又,tan 2tan tan .答案4.若sin(),则cos(2)的值为_.解析cos(2)cos(2)cos2()12sin2()2sin2()1.答案5.若1,则的值为_.解析1,tan .3.答案36.求下列各式的值:(1)sin sin ;(2)cos2 15cos2 75.(3)2cos2 1;(4).解(1)sin sincos ,sin sin sin cos 2sin cos sin .(2)cos2 75cos2(9015&#。

17、边长为1的网格中,点A,B,C均在格点上,则tanC的值是()图5-ZT-2A.2 B.43 C.1 D.343.如图5-ZT-3,在RtABC中,C=90,AC=12,BC=5.(1)求AB的长;(2)求sinA,cosA,tanA,sinB,cosB,tanB的值.图5-ZT-34.如图5-ZT-4,在ABC中,AB=8,BC=6,SABC=12.试求 tanB的值.图5-ZT-4技巧二巧设参数求锐角三角函数值5.在RtABC中,C=90,若tanA=512,则cosA的值是()A.512 B.813 C.23 D.12136.在ABC中,若ACBCAB=51213,则 cosA的值为()A.1213 B.513 C.512 D.1257.已知为锐角,且cos=13,求sin和tan的值.。

18、1.(C2)tan 2.(T2)2二倍角公式的重要变形升幂公式1cos 22cos2,1cos 22sin2,1cos 2cos2,1cos 2sin2 .1sin 2sin cos .()2cos 4cos22sin22.()3对任意角,tan 2.()提示公式中所含各角应使三角函数有意义如及,上式均无意义.题型一给角求值例1求下列各式的值:(1)cos 72cos 36;(2)cos215;(3);(4).解(1)cos 36cos 72.(2)cos215(2cos2151)cos 30.(3)222.(4)4.反思感悟对于给角求值问题,一般有两类(1)直接正用、逆用二倍角公式,结合诱导公式和同角三角函数的基本。

19、二倍角的正弦、余弦、正切公式 )进行变换, “ 角 ” 的变换是三 角恒等变换的核心  1常用三种函数的图象性质 (下表中 k Z) 函数  y sin x y cos x y tan x 图象  递增  区间  2222kk , 22kk ,  22kk ,递减  区间  2222kk , 22kk ,  奇偶性  奇函 数  偶函数  奇函数  对称  中心  (k, 0) 02k ,02k,对称轴  x k 2  x k  周期性  2 2 2三角函数的常用结论 &n。

20、比值叫做的正弦,记作sin ,即sin 余弦比值叫做的余弦,记作cos ,即cos 正切比值(x0)叫做的正切,记作tan ,即tan 三角函数正弦、余弦、正切都是以角为自变量,以角的终边上点的坐标的比值为函数值的函数,将它们统称为三角函数知识点二正弦、余弦、正切函数值在各象限的符号由三角函数定义可知,在平面直角坐标系中,设是一个任意角,它的终边与单位圆交于点P(x,y),则sin y,cos x,tan (x0)当为第一象限角时,y0, x0,故sin 0,cos 0,tan 0,同理可得当在其它象限时三角函数值的符号,如图所示记忆口诀:“一全正,二正弦,三正切,四余弦”1.sin ,cos ,tan 的大小与点P(x,y)在角的终边上的位置有关()提示三角函数的大小由角终边位置确定,而与点P(x,y)在终边上的位置无关2终边相同的角的同名三角函数值相等()提示由三角函数的定义可。

【上海 三角函数】相关PPT文档
【上海 三角函数】相关DOC文档
5.7三角函数的应用 教学设计1
1.2.2 同角三角函数关系 学案(含答案)
【上海 三角函数】相关PDF文档
第1讲:三角函数
标签 > 上海 三角函数[编号:196602]