三角函数复习

三角函三角函数与解三角形数与解三角形 三角函数是一种重要的基本初等函数, 它是描述周期现象的一个重要函数模型, 可以加 深对函数的概念和性质的理解和运用其主要内容包括:三角函数的概念、三角变换、三角 函数、解三角形等四部分 在掌握同角三角函数的基本关系式、 诱导公式、 两角和与两角差、 二倍角的正弦

三角函数复习Tag内容描述:

1、三角函三角函数与解三角形数与解三角形 三角函数是一种重要的基本初等函数, 它是描述周期现象的一个重要函数模型, 可以加 深对函数的概念和性质的理解和运用其主要内容包括:三角函数的概念、三角变换、三角 函数、解三角形等四部分 在掌握同角三角函数的基本关系式、 诱导公式、 两角和与两角差、 二倍角的正弦、 余弦、 正切公式的基础上,能进行简单三角函数式的化简、求值和恒等式证明;理解并能正确解决 正弦函数、余弦函数、正切函数的图象和性质问题;运用三角公式和正弦定理、余弦定理解 斜三角形重点考查相关的数学思想方法,。

2、三角函三角函数与解三角形数与解三角形 三角函数是一种重要的基本初等函数, 它是描述周期现象的一个重要函数模型, 可以加 深对函数的概念和性质的理解和运用其主要内容包括:三角函数的概念、三角变换、三角 函数、解三角形等四部分 在掌握同角三角函数的基本关系式、 诱导公式、 两角和与两角差、 二倍角的正弦、 余弦、 正切公式的基础上,能进行简单三角函数式的化简、求值和恒等式证明;理解并能正确解决 正弦函数、余弦函数、正切函数的图象和性质问题;运用三角公式和正弦定理、余弦定理解 斜三角形重点考查相关的数学思想方法,。

3、专题 04 三角函数的应用一、本专题要特别小心:1.图象的平移(把系数提到括号的前边后左加右减)2. 图象平移要注意未知数的系数为负的情况3. 图象的横坐标伸缩变换要注意是加倍还是变为几分之几4.五点作图法的步骤 5.利用图象求周期6.已知图象求解析式二【学习目标】1理解三角函数的定义域、值域和最值、奇偶性、单调性与周期性、对称性2会判断简单三角函数的奇偶性,会求简单三角函数的定义域、值域、最值、单调区间及周期3理解三角函数的对称性,并能应用它们解决一些问题三 【方法总结】1.三角函数奇偶性的判断与其他函数奇偶性的判断。

4、3.2二倍角的三角函数第1课时二倍角的三角函数基础过关1.已知sin 2,则cos2()A. B. C. D.解析cos2.答案C2.已知tan 22,22,则tan 的值为()A. B. C. D.解析由题意得2,解得tan 或tan .又22,则,所以有tan .答案C3.设sin 2sin ,则tan 2的值是_.解析sin 2sin ,cos ,又,tan 2tan tan .答案4.若sin(),则cos(2)的值为_.解析cos(2)cos(2)cos2()12sin2()2sin2()1.答案5.若1,则的值为_.解析1,tan 。

5、第四章 三角形,第19讲 锐角三角函数,01,02,03,04,目录导航,课 前 预 习,A,A,D,B,考 点 梳 理,sin(90A),1,1,课 堂 精 讲,B,A,4,B,60,往年 中 考,B,A,D,D,B,。

6、章末复习一、网络构建二、要点归纳1任意角三角函数的定义在平面直角坐标系中,设是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y叫做的正弦,记作sin ,即sin y;(2)x叫做的余弦,记作cos ,即cos x;(3)叫做的正切,记作tan ,即tan (x0)2同角三角函数的基本关系式(1)平方关系:sin2cos21.(2)商数关系:tan .3诱导公式六组诱导公式可以统一概括为“k(kZ)”的诱导公式当k为偶数时,函数名不改变;当k为奇数时,函数名改变,然后前面加一个把视为锐角时原函数值的符号记忆口诀为“奇变偶不变,符号看象限”4正弦函数、余弦函数和。

7、章末复习课网络构建核心归纳1三角函数的概念重点掌握以下两方面内容:理解任意角的概念和弧度的意义,能正确迅速进行弧度与角度的换算掌握任意的角的正弦、余弦和正切的定义,能正确快速利用三角函数值在各个象限的符号解题,能求三角函数的定义域和一些简单三角函数的值域2同角三角函数的基本关系式能用同角三角函数的基本关系式进行化简、求值和三角恒等式的证明;能逆用公式sin2cos21巧妙解题3诱导公式能用公式一至公式四将任意角的三角函数化为锐角三角函数,利用“奇变偶不变,符号看象限”牢记所有诱导公式善于将同角三角函数的基本。

8、4.2同角三角函数基本关系式及诱导公式最新考纲考情考向分析1.理解同角三角函数的基本关系式:sin2xcos2x1,tan x2.能利用单位圆中的三角函数线推导出,的正弦、余弦、正切的诱导公式.考查利用同角三角函数的基本关系、诱导公式解决条件求值问题,常与三角恒等变换相结合起到化简三角函数关系的作用,强调利用三角公式进行恒等变形的技能以及基本的运算能力题型为选择题和填空题,低档难度.1.同角三角函数的基本关系(1)平方关系:sin2cos21.(2)商数关系:tan (k,kZ).2.诱导公式公式一二三四五角2k(kZ)(2k1)(kZ)正弦sin sin sin cos cos 余。

9、高考专题突破二高考中的三角函数与解三角形问题题型一三角函数的图象和性质例1 (2016山东)设f(x)2sin(x)sin x(sin xcos x)2.(1)求f(x)的单调递增区间;(2)把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到函数yg(x)的图象,求g的值解(1)由f(x)2sin(x)sin x(sin xcos x)22sin2x(12sin xcos x)(1cos 2x)sin 2x1sin 2xcos 2x12sin1.由2k2x2k(kZ),得kxk(kZ)所以f(x)的单调递增区间是(kZ).(2)由(1)知f(x)2sin1,把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y2sin1的图。

10、专题训练(五)盘点三角函数求值的方法技巧技巧一运用定义求锐角三角函数值1.2018柳州 如图5-ZT-1,在RtABC中,C=90,BC=4,AC=3,则sinB的值为()图5-ZT-1A.35 B.45 C.37 D.342.如图5-ZT-2,将ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则tanC的值是()图5-ZT-2A.2 B.43 C.1 D.343.如图5-ZT-3,在RtABC中,C=90,AC=12,BC=5.(1)求AB的长;(2)求sinA,cosA,tanA,sinB,cosB,tanB的值.图5-ZT-34.如图5-ZT-4,在ABC中,AB=8,BC=6,SABC=12.试求 tanB的值.图5-ZT-4技巧二巧设参数求锐角三角函数值5.在RtABC中,C=90,若。

11、3.2二倍角的三角函数第1课时二倍角的三角函数学习目标1.会用两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式.2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变形运用知识点二倍角公式1倍角公式sin 22sin cos .(S2)cos 2cos2sin212sin22cos21.(C2)tan 2.(T2)2二倍角公式的重要变形升幂公式1cos 22cos2,1cos 22sin2,1cos 2cos2,1cos 2sin2 .1sin 2sin cos .()2cos 4cos22sin22.()3对任意角,tan 2.()提示公式中所含各角应使三角函数有意义如及,上式均无意义.题型一给角求值例1求下列各式的值:(1)cos 72c。

12、中考总复习:锐角三角函数综合复习知识讲解(提高)责编:常春芳【考纲要求】1.理解锐角三角函数的定义、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、低档题出现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题.【知识网络】【考点梳理】考点一、锐角三角函数的概念如图所示,在RtABC中,C90,A所对的边BC记为a,叫做A的对边,也叫做B的邻边,B所对的边AC记为b,叫做B的对边,也是A的邻边,直角C所对的边A。

13、中考总复习:锐角三角函数综合复习巩固练习(基础)【巩固练习】一、选择题1. 如图所示,在RtABC中,ACB90,BC1,AB2,则下列结论正确的是 ( )Asin A Btan A CcosB Dtan B 第1题 第2题2如图,在RtABC中,ACB=90,CDAB,垂足为D若AC=,BC=2,则sinACD的值为()A B CD3在ABC中,若三边BC、CA、AB满足 BCCAAB=51213,则cosB=( )A B C D4如图所示,在ABC中,C=90,AD是BC边上的中线,BD=4,AD=2,则tanCAD的值是()A.2 B. C. D.第4题 第6题5。

14、 (一一)三角函数与解三角形三角函数与解三角形 1.(2019 沈阳郊联体模拟)若 sin 3x 2 3,则 cos 32x 等于( ) A.7 9 B. 1 9 C. 1 9 D. 7 9 答案 C 解析 令 3x,则 2x 32, 所以 cos 2x 3 cos(2)cos 2 2sin211 9. 2.(2019 海口调研)下列不等式正确的是( ) A.sin 130 sin 40 log34 B.tan 226 log52 答案 D 解析 sin 40 1sin 80 1 2log52. 3.(2019 钦州模拟)在ABC 中,角 A,B,C 的对边分别是 a,b,c,若 a2,C 4,tan B 4 3,则ABC 的面积等于( ) A.8 7 B. 3 7 C. 4 7 D. 2 7 答案 A 解析 根据题干条件 tan B4 3可得到 sin B4 。

15、4.3三角函数的图象与性质最新考纲考情考向分析1.能画出ysin x,ycos x,ytan x的图象,了解三角函数的周期性2.理解正弦函数、余弦函数在0,2上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在内的单调性.以考查三角函数的图象和性质为主,题目涉及三角函数的图象及应用、图象的对称性、单调性、周期性、最值、零点考查三角函数性质时,常与三角恒等变换结合,加强数形结合思想、函数与方程思想的应用意识题型既有选择题和填空题,又有解答题,中档难度.1用五点法作正弦函数和余弦函数的简图(1)在正弦函数ysin x,x0,。

16、回扣回扣 3 三角函数三角函数、三角恒等变换与解三角形三角恒等变换与解三角形 1.终边相同角的表示 所有与角 终边相同的角,连同角 在内,可构成一个集合 S|k 360 ,kZ,即 任一与角 终边相同的角,都可以表示成角 与整数个周角的和. 2.几种特殊位置的角的集合 (1)终边在 x 轴非负半轴上的角的集合:|k 360 ,kZ. (2)终边在 x 轴非正半轴上的角的集合:|180 k 360 ,kZ. (3)终边在 x 轴上的角的集合:|k 180 ,kZ. (4)终边在 y 轴上的角的集合:|90 k 180 ,kZ. (5)终边在坐标轴上的角的集合:|k 90 ,kZ. (6)终边在 yx 上的角的集合:|45。

17、1三角函数的图象,主要涉及图象变换问题以及由图象确定解析式问题,主要以选择题、填空题的形式考查; 2利用三角函数的性质求解三角函数的值、参数、最值、值域、单调区间等,主要以解答题的形式考查; 3三角函数的化简与求值是高考的命题热点,其中同角三角函数的基本关系、诱导公式是解决计算问题的工具,三角恒等变换是利用三角恒等式 (两角和与差、二倍角的正弦、余弦、正切公式 )进行变换, “ 角 ” 的变换是三 角恒等变换的核心 1常用三种函数的图象性质 (下表中 k Z) 函数 y sin x y cos x y tan x 图象 递增 区间 2222kk , 22kk。

18、1.2任意角的三角函数12.1任意角的三角函数第1课时任意角的三角函数学习目标1.通过借助单位圆理解并掌握任意角的三角函数定义,了解三角函数是以实数为自变量的函数.2.借助任意角三角函数的定义理解并掌握正弦、余弦、正切函数值在各象限内的符号知识点一任意角的三角函数前提如图,设是一个任意角,P(x,y)是它的终边上任意一点定义正弦比值叫做的正弦,记作sin ,即sin 余弦比值叫做的余弦,记作cos ,即cos 正切比值(x0)叫做的正切,记作tan ,即tan 三角函数正弦、余弦、正切都是以角为自变量,以角的终边上点的坐标的比值为函数值的函。

19、4.1任意角、弧度制及任意角的三角函数最新考纲考情考向分析1.了解任意角的概念和弧度制的概念2.能进行弧度与角度的互化3.理解任意角三角函数(正弦、余弦、正切)的定义.以理解任意角三角函数的概念、能进行弧度与角度的互化和扇形弧长、面积的计算为主,常与向量、三角恒等变换相结合,考查三角函数定义的应用及三角函数的化简与求值,考查分类讨论思想和数形结合思想的应用意识题型以选择题为主,低档难度.1.角的概念(1)角的分类(按旋转的方向)角(2)象限角象限角象限角的集合表示第一象限角|k360k36090,kZ第二象限角|k36090k360180,kZ第。

20、专题三专题三 三角函数与解三角形三角函数与解三角形 第二编 讲专题 第第1 1讲讲 三角函数的图象与性质三角函数的图象与性质 考情研析 1.以图象为载体,考查三角函数的最值、单调性、对称 性、周期性 2.考查三角函数式的化简、三角函数的图象和性质、角的求 值,重点考查分析、处理问题的能力,是高考的必考点 1 核心知识回顾核心知识回顾 PART ONE 核心知识回顾核心知识回顾 热点考向探究。

【三角函数复习】相关PPT文档
【三角函数复习】相关DOC文档
第1章 三角函数 章末复习学案(含答案)
第3章 三角函数 章末复习学案(含答案)
高三数学二轮复习三角函数与解三角形
【三角函数复习】相关PDF文档
第1讲:三角函数
标签 > 三角函数复习[编号:189021]