人教版高中数学必修五2.2等差数列二同步练习含答案

2.5 等比数列的前 n 项和(二)课时目标1熟练应用等比数列前 n 项和公式的有关性质解题2能用等比数列的前 n 项和公式解决实际问题1等比数列a n的前 n 项和为 Sn,当公比 q1 时,S n ;当a11 qn1 q a1 anq1 qq1 时,S nna 1.2等比数列前 n 项和的性质:

人教版高中数学必修五2.2等差数列二同步练习含答案Tag内容描述:

1、2.5 等比数列的前 n 项和(二)课时目标1熟练应用等比数列前 n 项和公式的有关性质解题2能用等比数列的前 n 项和公式解决实际问题1等比数列a n的前 n 项和为 Sn,当公比 q1 时,S n ;当a11 qn1 q a1 anq1 qq1 时,S nna 1.2等比数列前 n 项和的性质:(1)连续 m 项的和 (如 Sm、S 2mS m、S 3mS 2m),仍构成等比数列(注意:q1 或 m为奇数)(2)Smn S mq mSn(q 为数列 an的公比)(3)若a n是项数为偶数、公比为 q 的等比数列,则 q.S偶S奇3解决等比数列的前 n 项和的实际应用问题,关键是在实际问题中建立等比数列模型一、选择题1在各项都为正数的。

2、2.4 等比数列(二)课时目标1进一步巩固等比数列的定义和通项公式2掌握等比数列的性质,能用性质灵活解决问题1一般地,如果 m,n,k,l 为正整数,且 mnkl,则有 amana kal,特别地,当 mn2k 时, amana .2k2在等比数列a n中,每隔 k 项(kN *)取出一项,按原来的顺序排列,所得的新数列仍为等比数列3如果a n,b n均为等比数列,且公比分别为 q1,q 2,那么数列 ,a nbn, ,1an bnan|an|仍是等比数列,且公比分别为 ,q 1q2, ,|q 1|.1q1 q2q1一、选择题1在等比数列a n中,a 11,公比|q| 1.若 ama 1a2a3a4a5,则 m 等于( )A9 B10C11 D12答。

3、2.3 等差数列的前 n 项和(一)课时目标1掌握等差数列前 n 项和公式及其性质2掌握等差数列的五个量 a1,d,n,a n,S n之间的关系1把 a1a 2a n叫数列a n的前 n 项和,记做 Sn.例如 a1a 2a 16 可以记作S16;a 1a 2a 3a n1 S n1 (n2) 2若a n是等差数列,则 Sn可以用首项 a1 和末项 an表示为 Sn ;若首项为na1 an2a1,公差为 d,则 Sn可以表示为 Snna 1 n(n1) d.123等差数列前 n 项和的性质(1)若数列a n是公差为 d 的等差数列,则数列 也是等差数列,且公差为 .Snn d2(2)Sm,S 2m,S 3m分别为a n的前 m 项,前 2m 项,前 3m 项的和,则Sm,S 2m。

4、2.2 等差数列(一)课时目标1理解等差数列的概念2掌握等差数列的通项公式1如果一个数列从第 2 项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示2若三个数 a,A,b 构成等差数列,则 A 叫做 a 与 b 的等差中项,并且 A .a b23若等差数列的首项为 a1,公差为 d,则其通项 ana 1(n1) d.4等差数列a n中,若公差 d0,则数列 an为递增数列;若公差 d0,即 d2, a12.6等差数列a n的公差 d1,nN *时,有 ,设15 an 1an 2an 1 11 2anbn ,1annN *.(1)求证:数列b n为。

5、2.2 等差数列(二)课时目标1进一步熟练掌握等差数列的通项公式2熟练运用等差数列的常用性质1等差数列的通项公式 ana 1(n1) d,当 d0 时,a n是关于 n 的常函数;当d0 时,a n是关于 n 的一次函数;点(n,a n)分布在以 d 为斜率的直线上,是这条直线上的一列孤立的点2已知在公差为 d 的等差数列a n中的第 m 项 am和第 n 项 an(mn),则 d.am anm n3对于任意的正整数 m、n、 p、q,若 mnpq.则在等差数列 an中,a ma n与apa q之间的关系为 ama na pa q.一、选择题1在等差数列a n中,若 a2a 4a 6a 8a 1080,则 a7 a8 的值为( )12A4 B6C8 D10答案。

标签 > 人教版高中数学必修五2.2等差数列二同步练习含答案[编号:110853]