人教版八年级正比例函数

课前准备,同学们,课本、练习本、笔,你准备好了吗?,第6章 反比例函数 6.2 反比例函数的图象和性质(1),1. 反比例函数的定义:,3. 反比例函数的确定:,4.它的三种常见的表示形式:,2. 反比例函数的特征:,k 0, x 0. x的指数是-1,待定系数法.,xy = k(k 0),y=kx

人教版八年级正比例函数Tag内容描述:

1、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第6章 反比例函数 6.2 反比例函数的图象和性质(1),1. 反比例函数的定义:,3. 反比例函数的确定:,4.它的三种常见的表示形式:,2. 反比例函数的特征:,k 0, x 0. x的指数是-1,待定系数法.,xy = k(k 0),y=kx-1(k0),复习回顾,引入新课,、下列函数,哪些是y关于x的反比例函数? ,y = 3x-1,y = 2x2,2、已知ABC的面积为12,则ABC的高h与它的底边a的函数关系式为,3、已知y是x的反比例函数,下表给出了x和y的一些值:,(1)求出这个反比例函数的表达式;,思考:表中能否增加x=0或y=0的值,为什。

2、专题分类突破八 一次函数与反比例函数类型 1 一次函数与反比例函数的交点问题【例 1】 如图所示,正比例函数 y1k 1x 的图象与反比例函数 y2 的图象相交于 A,B 两k2x点,其中点 A 的横坐标为 2,当 y1y2 时,x 的取值范围是 ( D )Ax2Bx2变式 1 若反比例函数 y 与一次函数 yx 2 的图象没有交点,则 k 的值可以是( A )kxA2 B1 C1 D2变式 2 若直线 ykx( k0)与双曲线 y 的交点为( x1,y 1),( x2,y 2),则 2x1y25x 2y1 的值2x为_6_【解析】 由题意知,直线 ykx( k0)过原点和一、三象限,且与双曲线 y 交于两点,2x则这两点关于原点对称,x 1x。

3、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第11章 反比例函数,11.1 反比例函数,(1)若速度 v40(km/h) ,路程 s(km)与时间 t(h)之间的表达式为 .,问题一:,一辆公交车从仰化出发开往宿迁,以速度v(km/h)行驶,行驶时间为t(h),行驶路程为s(km).,(2)若列车已经行驶了8km,继续以40(km/h)的速度行驶 t(h),行驶总路程 s(km)与时间 t(h)之间的表达式为 .,S=40t,S=40t+8,仰化与宿迁相距约30km,一辆公交车从仰化出发,以速度v(km/h)开往宿迁,全程所用时间为t(h).,填写下表:,(2)给定变量v的值,变量 t都有唯。

4、6.3反比例函数的应用,例1. 码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间. (1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系? (2)由于遇到紧急情况,船上的货物必须在不超过5日内卸载完毕,那么平均每天至少要卸多少吨货物?,根据装货速度装货时间=货物的总量,可以求出轮船装载货物的总量;再根据卸货速度=货物的总量卸货时间,得到v与t的函数式。,分析,练1、某蓄水池的排水管每小时排8m3 , 6h可将满池水全部排空。,蓄水池的容积是多少?,如果增加排水管,使每。

5、6.3反比例函数的应用,挑战记忆 创设情境 合作探究(1) (2) 自主尝试(1)(2)(3) 超越自我(1) 反思提高,实际问题与反比例函数(2),挑战记忆:,反比例函数图象有哪些性质?,反比例函数 是由两支曲线组成,当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大.,繁忙的码头,1,2,3,合作探究,码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。 (1)轮船到达目的地后开始卸货,卸货速度(单位:吨/天)与卸货。

6、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第6章 反比例函数 6.1 反比例函数,6.1 反比例函数,1、经历抽象反比例函数的过程,领会反比例函数的意义,理解反比例函数的概念. 2、能判断一个给定的函数是否为反比例函数,能根据实际问题中的条件确定反比例函数的表达式,学 习 目 标,新 课 导 入,请同学们把一张面值100元的人民币换成面值50元的人民币,可得几张?如果换成面值20元的人民币,可得几张?如果换成10元、5元的人民币呢? 设所换成的面值为x 元,相应的张数为y.,2,5,10,20,知 识 讲 解, 你会用含x的代数式表示y吗? 当所。

7、6.1 反比例函数,情景创设,(一)一个长方形的宽是2,长为3,那么它的面积是多少?长为4,那么它的面积是多少?随着长的长度增加,长方形的面积会怎样?,长方形的宽一定,面积与长成正比例。,这里的x,y可以表示单项式也可以是多项式,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系.,活动一,对于x,s两个变量,给定变量 x 的值,变量 s 都有唯一确定的值与它对应吗?,例如:1、圆柱的底面积是10,体积v与高度h的函数关系式2、有6。

8、6.1 反比例函数(2),创设情境,问题:反比例函数 ,当x=3时,y=6,求比例系数k的值.,如果已知一对自变量与函数的对应值,就可以先求出比例系数k,然后写出所求的反比例函数的解析式。,确定反比例函数的解析式,(1).写出这个反比例函数的表达式;,已知y是x的反比例函数,下表给出了x与y的一些值:,解: y是x的反比例函数,(2).根据函数表达式完成上表.,把x=-1,y=2代入上式得:,-3,1,4,-4,-2,2,典型例题,例2、y是关于x的反比例函数,当x=0.3时,y=-6, (1)求y是关于x的函数解析式; (2)自变量x的取值范围; (3)求x=6时,y的值。,设、代、解、还。

9、1课时作业(三十)4.3 第 1 课时 正比例函数的图象和性质 一、选择题1函数 y 的图象是 ( )x2 链 接 听 课 例 1归 纳 总 结A双曲线 B抛物线C直线 D线段22017柳州如图 K301,直线 y2x 必过的点是( )图 K301A(2,1) B(2,2)C(1,1) D(0,0)32017陕西若一个正比例函数的图象经过 A(3,6),B(m,4)两点,则 m 的值为( )A2 B8 C2 D84已知(x 1,y 1)和(x 2,y 2)是直线 y3x 上的两点,且 x1x2,则 y1与 y2的大小关系是( ) 链 接 听 课 例 3归 纳 总 结Ay 1y2 By 10) ,是正比例函数.(2)当 x7 时,y28.15.解:(1)将(3,6)代入 ykx,得63k,解。

10、第4章 一次函数,4.3 一次函数的图像,第1课时 正比例函数的图象和性质,目标突破,总结反思,第4章 一次函数,知识目标,4.3 一次函数的图像,知识目标,1采用图象法去准确地运用“两点法”画正比例函数的图象 2在掌握正比例函数图象的基础上,从系数k的角度去全面分析正比例函数的性质并加以应用,目标突破,目标一 会画正比例函数的图象,4.3 一次函数的图像,解析 (1)根据两条直线的表达式知其图象均过原点,再分别令x1求出y的值,描出各点,根据两点确定一条直线画出函数图象;(2)用量角器测量两直线的夹角,比较分析可得答案.,4.3 一次函数的。

11、4.2一次函数与正比例函数基础导练1下列函数:(1) ; (2) ; (3) ; (4) ; (5)43yx12yx1yx2yx中,一次函数有( )yxA1个 B2个 C3个 D4个2下列函数中,是一次函数但不是正比例函数的是( )A B C D3yyx12xy21xy3下列关系中,是正比例关系的是( )A当路程 s一定时,速度 v与时间 t; B圆的面积 S与圆的半径 r;C正方体的体积 V与棱长 a; D正方形的周长 C与它的一边长 a4若 是正比例函数,则 m的值为( )2(1)myxA1 B1 C1或1 D 或25若 与 成正比例,则 y是 x的( )3A正比例函数 B一次函数 C没有函数关系 D以上答案都不正确6若函。

12、 - 1 - 第第 18 章章 正比例函数与反比例函数正比例函数与反比例函数 单元测试卷单元测试卷 一选择题(共一选择题(共 6 小题)小题) 1一辆汽车以的速度行驶,行驶的路程与行驶的时间 之间的关系式为,其中变 量是 A速度与路程 B速度与时间 C路程与时间 D三者均为变量 2八年级(6)班一同学感冒发烧住院洽疗,护士为了较直观地了解这位同学这一天的体温和时间的 关系,可选择的比较好的方法是。

13、第第 18 章章 正比例函数与反比例函数正比例函数与反比例函数 单元测试卷单元测试卷 一选择题(共一选择题(共 6 小题)小题) 1已知与成反比例,与 成正比例,则与的关系是 A成正比例 B成反比例 C既成正比例也成反比例 D以上都不是 2下列函数中,随着的增大而减小的是 A B C D 3关于函数,下列说法中错误的是 A函数的图象在第二、四象限 B的值随的值增大而增大 C函数的图象与坐标。

14、19.2 一次函数 19.2.1 正比例函数,第一课时,第二课时,人教版 数学 八年级 下册,正比例函数的概念及解析式,第一课时,返回,2006年7月12日,我国著名运动员刘翔在瑞士洛桑的田经大奖赛110米栏的决赛中,以12.88秒的成绩打破了尘封13年的世界纪录,为我们中华民族争得了荣誉。在这次决赛中刘翔平均每秒约跑8.54米.,假定刘翔在这次110米栏决赛中奔跑速度是8.54米/秒,那么他奔跑的路程y(单位:米)与奔跑时间x(单位:秒)之间有什么关系?,y= 8.54x (0x 12.88),1. 理解正比例函数的概念.,2. 会求正比例函数的解析式,能利用正比例函数解决简单。

15、,导入新课,讲授新课,当堂练习,课堂小结,21.1 一次函数,第二十一章 一次函数,第1课时 正比例函数,情境引入,1.理解正比例函数的概念; 2.会求正比例函数的解析式,能利用正比例函数解决简单的实际问题.(重点、难点),导入新课,情景引入,如果设蛤蟆的数量为x,y分别表示蛤蟆嘴的数量,眼睛的数量,腿的数量,扑通声,你能列出相应的函数表达式吗?,y=x,y=2x,y=4x,y=x,讲授新课,问题1 下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数表达式: (1)圆的周长l 随半径r的变化而变化 (2)铁的密度为7.8g/cm3,铁块的质量m(单。

16、4.2 4.2 一次函数一次函数与正比例函数与正比例函数 4.2 4.2 一次函数与正比例函数一次函数与正比例函数 北师北师大大版版 数学数学 八年级八年级 上册上册 4.2 4.2 一次函数一次函数与正比例函数与正比例函数 1. .什么是。

17、正比例函数的图象和性质教学目标:1能用两点法画出正比例函数的图象;2正确理解正比例函数的图象及其性质;(重点)3通过对正比例函数图象的观察,发现正比例函数图象的性质(难点)教学过程:一、情境导入前面,我们已经学习了用描点法画出函数的图象,也知道通常可以结合函数的图象研究它的性质和应用那么,正比例函数图象有什么性质呢?做一做:在同一个平面直角坐标系中画出下列函数的图象: y x; y3 x;观察函数图象12有什么特点?二、合作探究探究点一:正比例函数的图象在下列各图象中,表示函数 y kx(k0)的图象的是( )解析: k0, k0。

18、19.2 一次函数19.2.1 正比例函数基础闯关全练1下列变量之间的关系中,一个变量是另一个变量的正比例函数的是 ( )A正方形的面积S随着边长x的变化而变化B正方形的周长C随着边长x的变化而变化C水箱有水10 L,以0.5 L/min的速度往外放水,水箱中的剩余水量V(L)随着放水时间t(min)的变化而变化D面积为20的三角形的一边a随着这边上的高h的变化而变化2若y=(m-1)是正比例函数,则m的值为( )A1 B-1 C1或-1 D3对于正比例函数y=(1-k)x,若y随x的增大而减小,则k的值可以是( )A-1 B3 C0 D-34如图19-2-1-1三个正比例函数的图象分别对应的解析式。

19、,导入新课,讲授新课,当堂练习,课堂小结,19.2.1 正比例函数,第十九章 一次函数,第1课时 正比例函数的概念,情境引入,1.理解正比例函数的概念; 2.会求正比例函数的解析式,能利用正比例函数解决简单的实际问题.(重点、难点),导入新课,情景引入,如果设蛤蟆的数量为x,y分别表示蛤蟆嘴的数量,眼睛的数量,腿的数量,扑通声,你能列出相应的函数解析式吗?,y=x,y=2x,y=4x,y=x,讲授新课,问题1 下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式: (1)圆的周长l 随半径r的变化而变化 (2)铁的密度为7.8g/cm3,铁块的质。

20、 19.2 19.2 一次函数一次函数 19.2.1 正比例函数正比例函数 新课导入 两个变量两个变量x,y成正比例成正比例, 且比例系数是且比例系数是k(k0),你能你能 写出写出y与与x的关系式吗的关系式吗? 学习目标 (1)知道什么样的函数是正比例函数知道什么样的函数是正比例函数,能根能根 据正比例函数的定义确定字母系数的值据正比例函数的定义确定字母系数的值. (2)会画正比例。

【人教版八年级正比例函数】相关PPT文档
【人教版八年级正比例函数】相关DOC文档
标签 > 人教版八年级正比例函数[编号:163780]