全等三角形的应用

p2018初三数学中考复习nbsp三角形与全等三角形nbsp专题复习训练题1.三角形的内角和等于(nbspnbsp第14课时三角形与全等三角形考点梳理自主测试考点一三角形的有关概念1.三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形.2.分类考点梳理自主测试考点二三角形课时24三角形与全

全等三角形的应用Tag内容描述:

1、第 1 页 共 9 页 中考总复习:中考总复习:全等三角形全等三角形巩固练习巩固练习 【巩固练习巩固练习】 一、选择题一、选择题 1如图,ABC 是不等边三角形,DE=BC,以 D、E 为两个顶点画位置不同的三角形,使所画的三角形与 ABC 全等,这样的三角形最多可画出( ) . A.2 个 B.4 个 C.6 个 D.8 个 2如图,RtABC 中,BAC=90,AB=AC,D 为 AC 的中点,AEBD 交 BC 于 E,若BDE=,ADB 的大小是( ) A B C D 3如图,ABC 中,C 为钝角,CF 为 AB 上的中线,BE 为 AC 上的高,若 CF=BE,则ACF 的大小是 ( ). A45 B60 C30 D不确定 4如图,ABC 中。

2、第 1 页 共 10 页 中考总复习中考总复习:全等全等三角形三角形知识讲解知识讲解 【考纲要求】【考纲要求】 1. 掌握全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素; 2探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式; 3. 善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等,灵活选择适当的方法判定两个三 角形全等. 【知识网络】【知识网络】 【考点梳理】【考点梳理】 考考点一、点一、基本概念基本概念 1 1. .全等三角形的全等三角形的定义:定义:能够完全重合的两个三角形叫做。

3、中考总复习:全等三角形巩固练习【巩固练习】一、选择题1如图,ABC是不等边三角形,DE=BC,以D、E为两个顶点画位置不同的三角形,使所画的三角形与ABC全等,这样的三角形最多可画出( ) .A.2个 B.4个 C.6个 D.8个2如图,RtABC中,BAC=90,AB=AC,D为AC的中点,AEBD交BC于E,若BDE=,ADB的大小是( )A B C D3如图,ABC中,C为钝角,CF为AB上的中线,BE为AC上的高,若CF=BE,则ACF的大小是( ).A45 B60 C30 D不确定4如图,ABC中,BAC=90 ADBC,AE平分BAC,B=2C,DAE的度数是( ) .A. 45 B. 20 C. 30 D.。

4、中考总复习:全等三角形知识讲解责编:常春芳【考纲要求】1. 掌握全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3. 善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等,灵活选择适当的方法判定两个三角形全等.【知识网络】【考点梳理】考点一、基本概念1.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等.要点诠释:全等三角形的周长、面积相。

5、第四章 三角形,第一部分 基础过关,第3讲 全等三角形,3,考情通览,4,5,1全等三角形的概念及判定 (1)能够完全重合的两个三角形叫做全等三角形 (2)全等三角形的判定有:“边边边”(SSS)、“边角边”(SAS)、“角角边”(AAS)、“角边角”(ASA) 特别的:两个直角三角形的判定还有“斜边直角边”(HL),知识梳理,要点回顾,6,1.已知:如图,点B、F、C、E在一条直线上,AD,ACDF.添加一个条件,使得ABCDEF,并加以证明你添加的条件是 _(不添加辅助线),答案不唯一,如ABDE,或BE,或ACBDFE,即时演练,7,2全等三角形的性质 全等三角形的对应边相等,对应。

6、第10讲 全等三角形(一)温故知新三角形的“三线”(一)三角形的“三线”(1)三角形的中线:在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。一个三角形有三条中线,并且交于一点,这点称为三角形的重心。三角形的中线性质:中线平分一条边;无论三角形什么形状,它的重心都在三角形的内部;三角形的一条中线把三角形分成面积相等的两个三角形。(2)三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。三角线的角平分线交于三角形内部一点。(3。

7、第11讲 全等三角形(二)温故知新(一)三角形全等的条件(1)三角形全等条件1:三条边分别相等的两个三角形全等,简写成“边边边”或“SSS”。符号语言:已知ABC与DEF的三条边对应相等。在ABC与DEF中,ABCDEF(SAS)(2)三角形的稳定性:由“SSS”结论可知,三角形三条边的长度确定了,三角形的大小和形状也就确定了,这个性质叫做三角形的稳定性。(3)三角形全等条件2:两角及其夹边分别相等的两个三角形全等,简写成“角边角”或“ASA”。 符号语言:如下图,已知D=E,ADAE,BADCAE求证:ABDACE证明:在ABD和ACE中,D=EAD=AEBADCAEAB。

8、核心母题二全等三角形【核心母题】如图,点A,F,C,D在一条直线上,ABDE,ABDE,AFDC.求证:ABCDEF.【知识链接】全等三角形的判定方法:SSS,SAS,ASA,AAS,HL(只限直角三角形)【母题分析】由全等三角形的判定方法SAS可证得ABC DEF.【母题解答】角度一 条件开放型子题1:如图,在ABC和DEF中,点B,F,C,E在同一直线上,BFCE,ABDE,请添加角度二 结论开放型子题2:如图,ABCD,ABCD,CEBF.请写出DF与AE的数量关系,并证明你的结论【子题分析】结论:DFAE.只要证明CDFBAE即可【子题解答】角度三 设置隐含条件子题3:如图,已知AC平分BAD。

9、 一、选择题一、选择题 1.(2019滨州)滨州)如图,在OAB 和OCD 中,OAOB,OCOD,OAOC,AOBCOD40,连接 AC,BD 交于点 M,连接 OM下列结论:ACBD;AMB40;OM 平分BOC;MO 平分 BMC其中正确的个数为( ) A4 B3 C2 D1 【答案】【答案】B 【解析】【解析】AOB=COD,AOC=BOD,又OA=OB,OC=OD,AOCBOD,AC。

10、课时训练课时训练( (十八十八) ) 全等三角形全等三角形 (限时:30 分钟) |夯实基础| 1.2018 巴中 下列各图中 a,b,c 为三角形的边长,则甲、乙、丙三个三角形和左侧ABC 全等的是 ( ) 图 K18-1 A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙 2.如图 K18-2,已知ABC=BAD,添加下列条件还不能判定ABCBAD 的是 ( ) 图 。

11、 第 22 课时 全等三角形 (60 分) 一、选择题(每题 5 分,共 25 分) 12019衡阳下列命题是假命题的是( ) An边形(n3)的外角和是 360 B线段垂直平分线上的点到线段两个端点的距离相等 C相等的角是对顶角 D矩形的对角线互相平分且相等 22019安顺如图,点B,F,C,E在一条直线上,ABDE,ACDF,添加下列一个 条件后,仍无法判断ABCDEF的是( ) AABD。

12、2021 中考数学专题训练中考数学专题训练:全等三角形全等三角形 一、选择题(本大题共一、选择题(本大题共 12 道小题)道小题) 1. 如图,要用“HL”判定 Rt ABC 和 Rt ABC全等,所需的条件是( ) AACAC,BCBC BAA,ABAB CACAC,ABAB DBB,BCBC 2. 如图,小强画了一个与已知 ABC 全等的 DEF,他画图的步骤是:(1)画 DEAB;(2。

13、2021 中考数学一轮专题训练:全等三角形中考数学一轮专题训练:全等三角形 一、选择题(本大题共一、选择题(本大题共 10 道小题)道小题) 1. 如图所示,CD90 ,若要用“HL”判定 Rt ABC 与 Rt ABD 全等,则可添加的条件 是( ) AACAD BABAB CABCABD DBACBAD 2. 如图,点 E,F 在 AC 上,ADBC,DFBE,要使 ADFCBE,还需。

14、知识点知识点 26 全等三角形全等三角形 一、选择题一、选择题 10.(2020 宁波)BDE和FGH是两个全等的等边三角形,将它们按如图的方式放置 在等边三角形ABC内.若求五边形DECHF的周长,则只需知道 AABC的周长 BAFH的周长C四边形FBGH的周长 D四边形ADEC的 周长 答案A 解析本题考查了全等三角形的判定和性质,等边三角形的性质,五边形 DECHF 的周长为 DE CEC。

15、1.1 全等三角形,结论:这两个图形完全重合,请观察,并说出你看到的现象,能够完全重合的两个平面图形,叫做全等形.,这两个五角星就是全等五角星,这两个正方形就是全等正方形,全等图形必须形状、大小完全相同,形状 相同,大小 相同,及时反馈,请观察,并说出你看到的现象,结论:这两个三角形重合,特别地,能够完全重合的两个三角形,叫全等三角形.,A,B,C,D,E,。

16、2020年中考数学试题分类汇编之九 三角形 1、 选择题 3.(2020北京)如图,AB和CD相交于点O,则下列结论正确的是( ) A.1=2 B.2=3 C.14+5 D.25 【解析】由两直线相交,对顶角相等可知A正确;由三角形的一个外角等于它不相邻的两个内角的和可知B选项的23,C选项1=4+5,D选项的25.故选A. 4(2020广州)ABC中,点D,E分别是ABC的边AB,A。

17、,课时24 三角形与全等三角形,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 三角形的概念与分类 (1)由三条线段_所围成的平面图形,叫做三角形 (2)三角形按边可分为:_三角形和_三角形;按角可分为_三角形、_三角形和_三角形 2. 三角形的性质 (1)三角形的内角和是_,三角形的外角等于与它_的两个内角的和,三角形的外角大于任何一个和它不相邻的内角 (2)三角形的两边之和_第三边,两边之差_第三边 3. 三角形中的重要线段 (1)角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的_三角形的。

18、第14课时 三角形与全等三角形,考点梳理,自主测试,考点一 三角形的有关概念 1.三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形. 2.分类,考点梳理,自主测试,考点二 三角形的性质 1.三角形的三边关系:三角形任意两边的和大于第三边;任意两边的差小于第三边. 2.三角形的外角及其外角和 (1)外角:三角形的一边与另一边的延长线组成的角. (2)外角和:三角形的外角和是360. 3.三角形的内角和定理及推理 (1)三角形的内角和定理:三角形的内角和等于180. (2)推论:三角形的任何一个外角等于和它不相邻的两个内角的和;三角形的一个外角大。

19、中考一轮复习全等三角形的应用自主复习达标测评中考一轮复习全等三角形的应用自主复习达标测评 1 如图 1, 一块三角形的玻璃打碎成四块, 现要到玻璃店去配一块完全一样的玻璃, 最简单的办法是 ( ) A只带去 B带去 C只带去 D带去 2 如图为了测量 B 点到河对面的目标 A 之间的距离, 在 B 点同侧选择了一点 C, 测得ABC65, ACB 35,然后在 M 处立了标杆,使MBC65,MC。

20、2018 初三数学中考复习 三角形与全等三角形 专题复习训练题 1. 三角形的内角和等于( ) A90 B180 C300 D360 2. 在ABC 中,若A95,B40,则C 的度数为( ) A35 B40 C45 D50 3. 在ABC 中,AB3,BC4,AC2,D,E,F 分别为 AB,BC,AC 中点,连接 DF,FE,则四边形 DBEF的周长是( &am。

【全等三角形的应用】相关PPT文档
【全等三角形的应用】相关DOC文档
中考总复习:全等三角形--巩固练习
中考总复习:全等三角形--知识讲解
标签 > 全等三角形的应用[编号:37968]