用待定系数法求二次函数解析式第22章:二次函数22.1二次函数的图像和性质人教版九年级上册课时流程学习目标:用一般式(三点式)确定二次函数解析式用顶点式确定二次函数解2020中考数学备考训练:二次函数一选择题(共14小题)1抛物线y(x+2)21的对称轴是()Ax1Bx1Cx2Dx22已知一次函数y
求二次函数解析式Tag内容描述:
1、二次函数中考压轴题(平行四边形)解析精选【例一】(2013嘉兴)如图,在平面直角坐标系xOy中,抛物线y=(xm)2m2+m的顶点为A,与y轴的交点为B,连结AB,ACAB,交y轴于点C,延长CA到点D,使AD=AC,连结BD作AEx轴,DEy轴(1)当m=2时,求点B的坐标;(2)求DE的长?(3)设点D的坐标为(x,y),求y关于x的函数关系式?过点D作AB的平行线,与第(3)题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?考点:二次函数综合题3718684专题:数形结合分析:(1)将m=2代入原式,得到二次函数的顶点式,。
2、 九年级数学专项训练二次函数二次函数中动点与特殊四边形综合问题解析与训练一、知识准备:抛物线与直线形的结合表形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊四边形,有以下常风的基本形式(1)抛物线上的点能否构成平行四边形(2)抛物线上的点能否构成矩形,菱形,正方形(3)抛物线上的点能否构成梯形。特殊四边形的性质与是解决这类问题的基础,而待定系数法,数形结合,分类讨论是解决这类问题的关键二、例题精析【抛物线上的点能否构成平行四边形】例一、如图,抛物线与直线交于两点,其中点在轴上,点的。
3、 1 考点分析考点分析:二次函数的实际应用考察销售利润方案问题是最常见的,并且 根据二次函数的性质,在一定的范围内,求出符合要求的最大值得出最大利润, 那么我们就要对销售利润问题的知识掌握熟练,以下知识点能很好的帮助我们解 决这类题目。 遇到二次函数的应用题我们需要考虑以下问题:遇到二次函数的应用题我们需要考虑以下问题: 1.看清题目,理清楚条件,弄懂题目的意思,知道要求什么,便于我们找准 合适的自变量 X 与相应的函数 Y,这是开头也是非常重要的。 2.条件整理清楚后,抓住数量关系列出函数关系式,如果要研究面积。
4、 2.4 幂函数与二次函数幂函数与二次函数 最新考纲 考情考向分析 1.了解幂函数的概念 2.结合函数 yx,yx2,yx3,y1 x,y 1 2 x 的图象,了解它们的变化情况 3.理解并掌握二次函数的定义,图象及性质 4.能用二次函数,方程,不等式之间的关系解 决简单问题. 以幂函数的图象与性质的应用为主,常与 指数函数、对数函数交汇命题;以二次函 数的图象与性质的应用为主,常与方程、 不等式等知识交汇命题,着重考查函数与 方程,转化与化归及数形结合思想,题型 一般为选择、填空题,中档难度. 1幂函数 (1)幂函数的定义 一般地,形如 yx的函数称。
5、高考数学函数专题训练 二次函数一、选择题1.二次函数,如果(其中),则()A B C D【答案】D【解析】由得所以故选D.2.已知函数有两个不同的零点,-2和,三个数适当排序后既可成为等差数列,也可成为等比数列,则函数的解析式为( )ABCD【答案】C【解析】由题意,函数有两个不同的零点,可得,则,又由和,三个数适当排序后既可成为等差数列,也可成为等比数列,不妨设,则,解得,所以,所以,故选C.3.若二次函数y=ax2+bx+c和y=cx2+bx+a(ac0,ac)。
6、 备战备战 20192019 年年中考中考数学数学压轴题压轴题之之二次函数二次函数 专题专题 01 01 二次函数基础上的数学建模类二次函数基础上的数学建模类 【方法【方法综述综述】 此类问题以实际问题为背景,一般解答方法是先按照题目要求利用各种数学知识,构造此类问题以实际问题为背景,一般解答方法是先按照题目要求利用各种数学知识,构造 二次函数的数学模型,再通过将临界点带入讨论或者通过考察二次函数最值讨论解决实际问二次函数的数学模型,再通过将临界点带入讨论或者通过考察二次函数最值讨论解决实际问 题。题。 【典例示范】【。
7、 【方法综述】【方法综述】 此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量 取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根 据题意找出等量关系;其次考察函数的最值计算、判断,解答方法是通过二次函数特性找到据题意找出等量关系;其次考察函数的最值计算、判断,解答方法是通过二次函数特性找到。
8、 【方法综述】【方法综述】 面积问题中,以三角形的面积的情况居多,通常三角形的面积探究方法如下:面积问题中,以三角形的面积的情况居多,通常三角形的面积探究方法如下: 方法一:应用相似三角形性质,面积比等于相似比平方处理面积;方法一:应用相似三角形性质,面积比等于相似比平方处理面积; 方法二:方法二: 同底等高类的三角形面积:同底等高类的三角形面积: 当两个三角形同底(高)等高(底)时,两个三角形的面积相等,同底(高)且高(底)不等的两个当两个三角形同底(高)等高(底)时,两个三角形的面积相等,同底(高。
9、 【方法综述】【方法综述】 本类型主要研究二次函数背景下的图形变换。因为图形的平移、折叠和旋转是许多数学本类型主要研究二次函数背景下的图形变换。因为图形的平移、折叠和旋转是许多数学 问题进行命题的基础,因此这类问题大量存在,并且和其它问题相交织。问题进行命题的基础,因此这类问题大量存在,并且和其它问题相交织。 二次函数背景下的图形变换主要分成两类:二次函数背景下的图形变换主要分成两类: 一个是二次函数图象的图形变换,此类问题在解决二次函数图象平移时可以采用顶点式一个是二次函数图象的图形变换,此类问题。
10、 【方法综述】【方法综述】 特殊三角形包括直角三角形和等腰三角形,在每一种种特殊三角形的基础上,特殊三角形包括直角三角形和等腰三角形,在每一种种特殊三角形的基础上,此类问题此类问题 分为固定边的三角形计算与判定和三角形的分类讨论。分为固定边的三角形计算与判定和三角形的分类讨论。 直角三角形的分类讨论要对三边分别为斜边的情况分类讨论,主要应用直角的存在,并直角三角形的分类讨论要对三边分别为斜边的情况分类讨论,主要应用直角的存在,并 以此为条件利用勾股定理和三角形相似构造等式,同时还有可能应用隐形的圆中。
11、 【方法综述】【方法综述】 知识准备:特殊四边形包括平行四边形、菱形、矩形和正方形。它们的判定方法如下:知识准备:特殊四边形包括平行四边形、菱形、矩形和正方形。它们的判定方法如下: 平行四边形的判定方法平行四边形的判定方法: 两组对边分别平行的四边形是平行四边形;两组对角分别相等的四边形是平行四边形 两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形 两条对角线互相平分的四边形是平行四边形; 矩形判的定方法矩形判的定方法 有一个角是直角的平行四边形是矩形;对角线相等的平行四边形。
12、 备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 07 二次函数背景下的三角形相似(全等)二次函数背景下的三角形相似(全等) 【方法综述】【方法综述】 三角形全等是三角形相似的特殊情况。三角形的全等和相似是综合题中的常见要素,解答时注意应用三角形全等是三角形相似的特殊情况。三角形的全等和相似是综合题中的常见要素,解答时注意应用 全等三角形和相似的判定方法。另外,注意题目中全等三角形和相似的判定方法。另外,注意题目中“”与全等表述、与全等表述、“”和相似表述的区别。全等和和相。
13、 备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 08 二次函数背景下的与线段有关的最值探究二次函数背景下的与线段有关的最值探究 【方法综述】【方法综述】 与线段有关的最值探究问题,是中考试卷中的常见问题。解答这些问题常涉及到的知识与线段有关的最值探究问题,是中考试卷中的常见问题。解答这些问题常涉及到的知识 有:两点之间线段最小、垂线段最短、直径是最长的弦等。与之相关的数学模型有:最短路有:两点之间线段最小、垂线段最短、直径是最长的弦等。与之相关的数学模型有:最短路 径问题、。
14、 备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专专题题 09 二次函数背景下的动点问题探究二次函数背景下的动点问题探究 【方法综述】【方法综述】 动点是常见的综合问题中的构成要件,通过点的运动命题者可以构造各种问题情景。动动点是常见的综合问题中的构成要件,通过点的运动命题者可以构造各种问题情景。动 点的呈现方式从动点个数往往有单动点或双动点,从运动呈现方式分为无速度动点和有速度点的呈现方式从动点个数往往有单动点或双动点,从运动呈现方式分为无速度动点和有速度 动点,从动点的引起的变化。
15、 备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 10 二次函数背景下的与圆有关的问题二次函数背景下的与圆有关的问题 【方法综述】【方法综述】 圆和二次函数都是初中数学重点知识,是压轴题中的常见题目。而二次函数与圆的结合圆和二次函数都是初中数学重点知识,是压轴题中的常见题目。而二次函数与圆的结合 则常常是高难度的压轴题。以二次函数为背景的问题中,圆的知识常常以圆的基本知识、与则常常是高难度的压轴题。以二次函数为背景的问题中,圆的知识常常以圆的基本知识、与 圆有关的位置关系、构。
16、专题训练(四)二次函数图像信息专题类型之一根据抛物线的特征确定a,b,c及与其有关的代数式的符号1.已知二次函数y=-x2+2bx+c,当x1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b-1 B.b-1C.b1 D.b12.2019通辽 在平面直角坐标系中,二次函数y=ax2+bx+c(a0)的图像如图4-ZT-1所示,现给出以下结论:abc3 B.a5。
17、专题12 二次函数专题知识回顾 1二次函数的概念:一般地,自变量x和因变量y之间存在如下关系: y=ax2+bx+c(a0,a、b、c为常数),则称y为x的二次函数。抛物线叫做二次函数的一般式。2.二次函数y=ax2 +bx+c(a0)的图像与性质yxO(1)对称轴:(2)顶点坐标:(3)与y轴交点坐标(0,c)(4)增减性:当a0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a0时,抛物线的开口向上;当a0时,抛物线的开。
18、2020年中考数学专项训练:二次函数一选择题1抛物线y2(x+1)2的顶点坐标和对称轴分别是()A(1,0),直线x1B(1,0),直线x1C(0,1),直线x1D(0,1),直线x02二次函数y(x4)2+5的图象的开口方向、对称轴、顶点坐标分别是()A向上,直线x4,(4,5)B向上,直线x4,(4,5)C向上,直线x4,(4,5)D向下,直线x4,(4,5)3已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h(t4)2+20若此礼炮在升空到最高处时引爆,则引爆需要的时间为()A3sB4sC5sD6s4抛物线yax2+bx+c(a0)如图所示,下列结论:abc0;点(3,y1),。
19、2020中考数学备考训练:二次函数一选择题(共14小题)1抛物线y(x+2)21的对称轴是()Ax1Bx1Cx2Dx22已知一次函数y1kx+m(k0)和二次函数y2ax2+bx+c(a0)部分自变量与对应的函数值如下表x10245y101356y201059当y2y1时,自变量x的取值范围是()A1x2B4x5Cx1或x5Dx1或x43如图,一条抛物线与x轴相交于M、N两点(点M在点N的左侧),其顶点P在线段AB上移动若点A、B的坐标分别为(2,3)、(1,3),点N的横坐标的最大值为4,则点M的横坐标的最小值为()A1B3C5D74二次函数y(x1)23的最小值是()A2B1C2D35已知二次函数y1ax2+bx+c(a0)和一次。
20、用待定系数法求二次函数解析式,第22章:二次函数,22.1 二次函数的图像和性质,人教版九年级上册,课时流程,学习目标:,用一般式(三点式)确定二次函数解析式 用顶点式确定二次函数解析式 用交点式确定二次函数解析式,导入新课,已知一次函数图象上两个点的坐标就可以用待定系数法求出一次函数的解析式,那么要求一个二次函数的解析式需要哪些条件,用什么方法求解呢?这就是我们本节课要学习的内容.,知识点,新课讲解,情景引入:问题1用一般式(三点式)确定二次函数的解析式,已知抛物线过三点,求其解析式,可采用一般式; 而用一般式求待定系。