与方差掌握均值与方差、正态分 布的性质和求法是解题关键高考中常以解 答题形式考查、难度为中等偏上. 1离散型随机变量的均值与方差 一般地,若离散型随机变量 X 的分布列为 X x1 x2 xi xn P p1 p2 pi pn (1)均值 称 E(X)x1p1x2p2xipixnpn为随机变量 X
离散数学Tag内容描述:
1、与方差掌握均值与方差、正态分 布的性质和求法是解题关键高考中常以解 答题形式考查、难度为中等偏上. 1离散型随机变量的均值与方差 一般地,若离散型随机变量 X 的分布列为 X x1 x2 xi xn P p1 p2 pi pn (1)均值 称 E(X)x1p1x2p2xipixnpn为随机变量 X 的均值或数学期望它反映了离散型 随机变量取值的平均水平 (2)方差 称 D(X) n i1(xiE(X) 2p i为随机变量 X 的方差,它刻画了随机变量 X 与其均值 E(X)的平均偏 离程度,并称其算术平方根 DX为随机变量 X 的标准差 2均值与方差的性质 (1)E(aXb)aE(X)b. (2)D(aXb)a2D(X)(a,b 为常数) 3两点分布与二项分布的均值、方差 (1)若随机变量 X 服从两点分布,则 E(X)p,D(X)p(1p) (2)若 XB(n,p),则 E(X)np,D(X)np(1p) 4正态分布 (1)正态曲线: 函数 ,(x) 2 2 () 2 1 e 2 x。
2、2.5.2 离散型随机变量的方差与标准差离散型随机变量的方差与标准差 学习目标 1.了解离散型随机变量的方差及标准差的概念.2.能计算简单离散型随机变量的 方差,并能解决一些实际问题.3.掌握方差的性质,以及两点分布、二项分布的方差的求法, 会利用公式求它们的方差 知识点一 方差、标准差的定义及方差的性质 甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为 X 和 Y, X。
3、 第 1 页 / 共 11 页 考点考点 33 离散型随机变量的概率离散型随机变量的概率 1、会求离散型随机变量的概率; 2、了解超几何分布及其导出过程,并能进行简单运用; 3、理解 N 次独立重复试验的模型及二项分布,并能解决一些简单的实际应用; 理解离散型随机变量的均值与方差,会根据离散型随机变量的概率分布求出期望与方差 离散型随机变量的分布列、均值与方差是高考的热点题型,去年竟有解答。
4、94 离散型随机变量的分布列均值与方差离散型随机变量的分布列均值与方差 教材梳理 1离散型随机变量的概念 1随机变量 如果随机试验的结果可以用一个随着试验结果变化而变化的变量来表示,那么这样的变 量叫做,随机变量常用字母 X,Y, , 等表。
5、随机变量 X 的 均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)方差称 D(X) _(xiE( X)2pi 为随机变量 X 的方差,它刻画了随机变量 X 与其均值 E(X)的n i 1平均偏离程度,其算术平方根 为随机变量 X 的标准差.D(X)2.均值与方差的性质(1)E(aXb) aE(X)b.(2)D(aXb)a 2D(X)(a,b 为常数).3.两点分布与二项分布的均值、方差(1)若 X 服从两点分布,则 E(X)p,D (X)p(1p) .(2)若 X B(n,p),则 E(X)np,D(X) np(1p).提醒:1.若 x1,x 2 相互独立,则 E(x1x2)E(x 1)E(x2).2.均值与方差的关系:D(X) E(X 2)E 2(X).3.超几何分布的均值:若 X 服从参数为 N,M,n 的超几何分布,则 E(X) .nMN核心能力必练一、选择题1(2019 宁波期末)一个箱子中装有形状完全相同的 5 个白球和 n(nN *)个黑球.现从中有放回的摸取 4 次,每次都是随机摸取一球。
6、2.3.2 离散型随机变量的方差离散型随机变量的方差 学习目标 1.理解取有限个值的离散型随机变量的方差及标准差的概念.2.能计算简单离散 型随机变量的方差,并能解决一些实际问题.3.掌握方差的性质,以及二点分布、二项分布的 方差的求法,会利用公式求它们的方差 知识点一 离散型随机变量的方差、标准差 甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为 X 和 Y, X 和 。
7、 2.3 随机变量的数字特征随机变量的数字特征 2.3.1 离散型随机变量的数学期望离散型随机变量的数学期望 学习目标 1.理解取有限值的离散型随机变量的均值或数学期望的概念.2.会求离散型随机 变量的数学期望.3.会利用数学期望分析和解决一些实际问题 知识点一 离散型随机变量的数学期望 设有 12 个西瓜,其中 4 个重 5 kg,3 个重 6 kg,5 个重 7 kg. 思考 1 任取 1 。
8、学期望集中的程度,方差越 小,X 向数学期望 集中的越好(3)如果 X 是从某个总体中通过随机抽样得到的个体,X 的方差 D(X)就是总体方差2, X 的数学期望 E(X)就是总体均值 .2几个常见方差的计算公式(1)若 YaXb,a,b 为常数,即 D(aXb) a 2D(X);(2)当 X 服从二点分布(1,p)时,D (X)p(1 p);(3)当 X 服从二项分布 B(n,p) 时,D (X)np(1p) ;(4)当 X 服从超几何分布 H(N,M,n)时,D (X) .nMN(1 MN)N nN 1小问题大思维1离散型随机变量的方差与样本的方差都是变量吗?提示:样本的方差随样本的不同而变化,是一个随机变量,而离散型随机变量的方差是通过大量试验得出的,刻画了随机变量 X 与其均值 E(X)的平均偏离程度,因此它是一个常数而非变量2D(X)的取值范围是什么?若 b 为常数,则 D(b)为何值?提示:因为 D(X) (xiE(X) 2pi,ni 1其中(x i E(X)20,p i0,所以 D(X)的取值范围。
9、方差表示为的二次函数,二次函数的图象和性质解题题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查【解析】方法1:由分布列得,则,则当在内增大时,先减小后增大故选D方法2:则,则当在内增大时,先减小后增大故选D【名师点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式【母题来源二】【2018年高考浙江卷】设,随机变量的分布列是012P则当p在(0,1)内增大时,AD()减小BD()增大CD()先减小后增大DD()先增大后减小【答案】D【解析】E()=01-p2+112+2p2=p+12,D()=1-p2(0-p-12)2+12(1-p-12)2+p2(2-p-12)2=-p2+p+14,12(0,1),D()先增大后减小,故选D【母题来源三】【2017年高考浙江卷】已知随机变量满足P(=1)=pi,P(=0)=1。
10、表示事件Xx i的概率,则 piP(Xx i),i1,2,n 是离散型随机变量 X 的概率分布当 X 的概率分布p i规律性不明显时, 可用下面的表格表示 X 的分布.X x1 x2 x3 P p1 p2 p3 4.随机变量 X 的概率分布的性质p i0,i1,2,n;p 1p 2p n1.小问题大思维1任何随机试验的所有结果都可以用数字表示吗?提示:可以实际上我们可以建立一个随机试验的所有结果同实数间的对应关系,根据问题的需要选择相应数字2是不是所有试验的离散型随机变量?并举例说明提示:不是如在东北森林中任取一棵树木的高度离散型随机变量例 1 指出下列随机变量是否是离散型随机变量,并说明理由(1)湖南矮寨大桥桥面一侧每隔 30 米有一路灯,将所有路灯进行编号,其中某一路灯的编号 X;(2)在一次数学竞赛中,设一、二、三等奖,小明同学参加竞赛获得的奖次 X;(3)丁俊晖在 2017 年世锦赛中每局所得的分数解 (1)桥面上的路灯是可数的,编号 X 可以一一列出, 是离散型随机变量(2)小明获。
11、同值为 x1,x 2,x i,x n,X 取每一个值xi(i 1, 2,n)的概率 P(Xx i)p i,则表X x1 x2 xi xnP p1 p2 pi pn称为离散型随机变量 X 的概率分布列.(2)离散型随机变量的分布列的性质:p i0(i1,2,n) ;p 1p 2p n1.3.常见离散型随机变量的分布列(1)两点分布:若随机变量 X 服从两点分布,其分布列为:其中 pP( X1)称为成功概率 .(2)超几何分布:在含有 M 件次品的 N 件产品中,任取 n 件,其中恰有 X 件次品,则P(Xk) ,k0,1,2,m,其中 mminM, n,且nN,MN,n,M,NN *,称随机变量 X 服从超几何分布.X 0 1 mP 核心能力必 练一、选择题1(2019 菏泽联考)一盒中有 12 个乒乓球,其中 9 个新的、 3 个旧的,从盒中任取 3 个球来用,用完后装回盒中,此时盒中旧球个数 X 是一个随机变量,则 P(X4) 的值为( )A. B. C. D.1220 275。
12、数,则 E(aXb)aE(X) b;(2)当 X 服从两点分布 B(1,p) 时,E(X)p;(3)当 X 服从二项分布 B(n,p) 时,E(X)np;(4)当 X 服从超几何分布 H(N,M,n)时,E( X)n .MN小问题大思维1随机变量 X 的均值 E(X)是一个常数还是一个变量?提示:随机变量 X 是可变的,可以取不同的值,而数学期望(或均值) 是不变的,它描述 X 取值的平均水平,由 X 的分布列唯一确定2若 c 为常数,则 E(c)为何值?提示:由离散型随机变量的均值的性质 E(aXb) aE (X)b 可知,若 a0,则 E(b)b,即若 c 为常数,则 E(c)c.3E(X) 与 X 的单位是否一致?提示:E( X)表示随机变量 X 的平均值,因此 E(X)与 X 的单位是一致的离散型随机变量的数学期望例 1 为回馈顾客,某商场拟通过摸球兑奖的方式对 1 000 位顾客进行奖励,规定:每位顾客从一个装有 4 个标有面值的球的袋中一次性随机摸出 2 个球,球上所标的面值之和为该顾客所获的奖励额若袋中所装的 4 个。
13、2.1离散型随机变量及其分布列 2.1.1离散型随机变量 学习目标1.理解随机变量及离散型随机变量的含义.2.了解随机变量与函数的区别与联系 知识点一随机变量 思考1抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果,这种试验结果能用数字表示吗? 答案可以,可用数字1和0分别表示正面向上和反面向上 思考2在一块地里种10棵树苗,成活的棵数为x,则x可取哪些数字? 答案x0,1,2,3,1。
14、 机变量分布列的求法在高考中以解答题的 形式进行考查,难度多为中低档. 1离散型随机变量的分布列 (1)随着试验结果变化而变化的变量叫做随机变量所有取值可以一一列出的随机变量叫做离 散型随机变量 (2)一般地,若离散型随机变量 X 可能取的不同值为 x1,x2,xi,xn,X 取每一个值 xi(i1,2,n)的概率 P(Xxi)pi,则称表 X x1 x2 xi xn P p1 p2 pi pn 为离散型随机变量 X 的概率分布列,简称为 X 的分布列,具有如下性质: pi0,i1,2,n; p1p2pipn1. 离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和 2两点分布 如果随机变量 X 的分布列为 X 0 1 P 1p p 其中 0p1,则称离散型随机变量 X 服从两点分布 其中 pP(X1)称为成功概率 3超几何分布 一般地,设有 N 件产品,其中有 M(MN)件次品从中任取 n(nN)件产品,用 X 表示取出 的 n 件产品中次品的件数,那么 P(Xk)C k。
15、式表示如下:X x1 x2 xi xnP p1 p2 pi pn这个表格称为离散型随机变量 X 的概率分布列,简称为 X 的分布列(2)离散型随机变量的分布列的性质:p i0,i1,2,n;(1)离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象.和函数的表示法一样,离散型随机变量的分布列也可以用表格、等式 P(Xx i)p i,i1,2,n 和图象表示.(2)随机变量的分布列不仅能清楚地反映随机变量的所有可能取值,而且能清楚地看到取每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2两个特殊分布(1)两点分布X 0 1P 1p p若随机变量 X 的分布列具有上表的形式,则称 X 服从两点分布,并称 pP(X1) 为成功概率(2)超几何分布一般地,在含有 M 件次品的 N 件产品中,任取 n 件,其中恰有 X 件次品,则 P(Xk ),k0,1,2,m ,即X 0 1 mP 其中 mminM,n,且 nN ,M N ,n,M ,N N *.如果随机变量 X 的分布列具有上表的形式,。
16、 pi pn则称 E(X)x 1p1x 2p2x ipix npn 为随机变量 X 的均值或数学期望(2)意义:离散型随机变量 X 的均值或数学期望反映了离散型随机变量取值的 平均水平(3)性质:如果 X 为离散型随机变量,则 YaXb( 其中 a,b 为常数)也是随机变量,且E(Y)E(aX b)aE(X ) B随机变量的均值与样本平均值的关系:随机变量的均值是一个常数,它不依赖于样本的抽取,而样本平均值是 一个随机变量,它随样本抽取的不同而变化对于简单随机样本,随着样本容量的增加,样本平均值越来越接近总体的均值2两点分布、二项分布的均值(1)若随机变量 X 服从两点分布,则 E(X)p(p 为成功概率) (2)若 X B(n,p),则 E(X)np判断正误(正确的打“” ,错误的打 “”)(1)随机变量 X 的数学期望 E(X)是个变量,其随 X 的变化而变化( )(2)随机变量的均值与样本的平均值相同( )(3)若随机变量 X 的数学期望 E(X)2,则 E(2X。
17、2.5随机变量的均值和方差 25.1离散型随机变量的均值 学习目标1.了解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.理解离散型随机变量的均值的性质.3.掌握两点分布、二项分布的均值.4.会利用离散型随机变量的均值,反映离散型随机变量的取值水平,解决一些相关的实际问题 知识点一离散型随机变量的均值 设有12个西瓜,其中4个重5 kg,3个重6 kg,5个重7 kg. 思考1任取1。
18、机变量(2)表示:随机变量常用字母 X,Y, , ,表示2离散型随机变量所有取值可以一一列出的随机变量,称为离散型随机变量随机变量是随机试验结果和实数之间的一个对应关系,这种对应是人为的,但又是客观存在的 判断正误(正确的打“” ,错误的打 “”)(1)离散型随机变量的取值是任意的实数( )(2)随机变量的取值可以是有限个,也可以是无限个( )(3)离散型随机变量是指某一区间内的任意值( )答案:(1) (2) (3) 如果 X 是一个离散型随机变量且 YaXb,其中 a,b 是常数且 a0,那么 Y( )A不一定是随机变量B一定是随机变量,不一定是离散型随机变量C可能是定值D一定是离散型随机变量答案:D一木箱中装有 8 个同样大小的篮球,编号为 1,2,3,4,5,6,7,8,现从中随机取出 3 个篮球,以 表示取出的篮球的最大号码,则 8 表示的试验结果有_种答案:21探究点 1 随机变量的概念判断下列各个量,哪些是随机变量,。
19、摇离散数学试题答案及评分参考第员摇摇摇摇页渊共缘页冤绝密绎启用前圆园圆猿年员园月高等教育自学考试全国统一命题考试渊课程代码摇园圆猿圆源冤一尧单项选择题院本大题共员缘小题袁每小题员分袁共员缘分遥员郾阅圆郾月猿郾阅源郾月缘郾阅远郾月苑郾粤愿郾悦。