二次函数同步综合练习卷一选择题1下列函数中属于二次函数的是()Ayx(x+1)Bx2y1Cy2x22(x2+1)Dy2若b0时,二次函数y二次函数解析式的求法zxxkw二次函数的解析式有哪些?一般式:y=ax+bx+c(a0)顶点式:y=a(x-h)+k(a0)交点式:y=a(x-x1)(x第16章
九年级数学上册二次函数常考题目Tag内容描述:
1、北师大九年级数学下册 第二章 二次函数 2.1 二次函数 同步训练学校:_ 班级:_ 姓名:_ 考号:_一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计 30 分 , ) 1. 下列函数中,能表示 是 的二次函数是( ) A.=12B.=22C.2=21 D.=(31)322. 是二次函数,则 的值为( ) =2+2+2 A. ,0 2 B. ,0 2 C.0 D. 23. 如果函数 是二次函数,那么 的值一定是( ) =(3)23+2 A.0 B.3 C. ,0 3 D. ,1 24. 下列函数关系中,可以看做二次函数 模型的是( ) =2+A.在一定距离内,汽车行驶的速度与行驶的时间的关系B.我国人中自然增长率为 ,这样我国总人。
2、5.1 二次函数,九年级(下册),作 者:古 杨 (连云港市新海实验中学),初中数学,我们学习过的函数有哪几种?你能分别写出它们的表达形式吗?,复习回顾,5.1 二次函数,问题情境,水滴激起的波纹不断向外扩展,扩大的圆的周长C、面积S分别与半径r之间有怎样的函数关系?这两个函数表达式有何差异?,5.1 二次函数,问题探究,用16米长的篱笆围成矩形的生物园饲养小兔,怎样围可使小兔的活动范围较大?你能说清其中的道理吗?,设长方形的长为x米,则宽为(8x)米,矩形面积 y与长 x之间的函数关系式为: yx28x,5.1 二次函数,一面长与宽之比为2:1的矩形镜。
3、2.1 二次函数二次函数 1理解、掌握二次函数的概念和一般 形式;(重点) 2会利用二次函数的概念解决问题; (重点) 3列二次函数表达式解决实际问 题(难点) 一、情境导入 已知长方形窗户的周长为 6m,窗户面 积为 y m2,窗户宽为 x m,你能写出 y 与 x 之间的函数关系式吗?它是什么函数呢? 二、合作探究 探究点一:二次函数的概念 【类型一】 二次函数的识别 下列函数中是二次函数的有 ( ) yx1 x;y3(x1) 22;y(x 3)22x2;y 1 x2x. A4 个 B3 个 C2 个 D1 个 解析:yx1 x,y 1 x2x 的右边 不是整式,故不是二次函数;y3(x 1)22,符合二次函数。
4、 1 考点分析考点分析:二次函数的实际应用考察销售利润方案问题是最常见的,并且 根据二次函数的性质,在一定的范围内,求出符合要求的最大值得出最大利润, 那么我们就要对销售利润问题的知识掌握熟练,以下知识点能很好的帮助我们解 决这类题目。 遇到二次函数的应用题我们需要考虑以下问题:遇到二次函数的应用题我们需要考虑以下问题: 1.看清题目,理清楚条件,弄懂题目的意思,知道要求什么,便于我们找准 合适的自变量 X 与相应的函数 Y,这是开头也是非常重要的。 2.条件整理清楚后,抓住数量关系列出函数关系式,如果要研究面积。
5、 学科教师辅导讲义学员编号: 年 级:九年级(下) 课 时 数:3学员姓名:辅导科目:学科教师:授课主题第03讲-二次函数授课类型T同步课堂P实战演练S归纳总结教学目标 掌握二次函数的定义; 掌握二次函数的一般式; 能掌握二次函数的简单应用。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、知识框架二、知识概念1、二次函数的概念一般地,如果yax2bxc(a,b,c是常数,a0),那么y叫做x的二次函数注意:(1)二次项系数a0;yax2bxc(a,b,c是常数,a0)叫做二次函数的一般式;(2)ax2bxc必须是整式;(3)一次项可以为零,常数项。
6、2.1 二次函数,第二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,北师大版九年级下册数学教学课件,1.理解掌握二次函数的概念和一般形式.(重点) 2.会利用二次函数的概念解决问题. 3.会列二次函数表达式解决实际问题.(难点),导入新课,情景引入,里约奥运会上,哪位奥运健儿给你留下了深刻的印象?你能猜出下面表情包是谁吗?,你们是根据哪些特征猜出的呢?,下面来看傅园慧在里约奥运会赛后的采访视频,注意前方高能表情包.,通过表情包来辨别人物,最重要的是根据个人的特征,那么数学的特征是什么呢?,“数学根本上是玩概念的,不是。
7、高考数学函数专题训练 二次函数一、选择题1.二次函数,如果(其中),则()A B C D【答案】D【解析】由得所以故选D.2.已知函数有两个不同的零点,-2和,三个数适当排序后既可成为等差数列,也可成为等比数列,则函数的解析式为( )ABCD【答案】C【解析】由题意,函数有两个不同的零点,可得,则,又由和,三个数适当排序后既可成为等差数列,也可成为等比数列,不妨设,则,解得,所以,所以,故选C.3.若二次函数y=ax2+bx+c和y=cx2+bx+a(ac0,ac)。
8、 2.4 幂函数与二次函数幂函数与二次函数 最新考纲 考情考向分析 1.了解幂函数的概念 2.结合函数 yx,yx2,yx3,y1 x,y 1 2 x 的图象,了解它们的变化情况 3.理解并掌握二次函数的定义,图象及性质 4.能用二次函数,方程,不等式之间的关系解 决简单问题. 以幂函数的图象与性质的应用为主,常与 指数函数、对数函数交汇命题;以二次函 数的图象与性质的应用为主,常与方程、 不等式等知识交汇命题,着重考查函数与 方程,转化与化归及数形结合思想,题型 一般为选择、填空题,中档难度. 1幂函数 (1)幂函数的定义 一般地,形如 yx的函数称。
9、6.3 相似图形,九年级(下册),作 者:刘倩(连云港市东港中学新校区),初中数学,欣赏,6.3 相似图形,下列各组图形有什么共同的特征?你还能举出具有这样特征的图形吗?,形状相同的图形叫做相似形(similar figures),6.3 相似图形,“形状相同”的两个图形具有怎样的特征呢?,1下图(1)中的两个正三角形“形状相同”,它们的边和角有怎样的数量关系?图(2)中的两个“形状相同”的三角形呢?,C,B,A,A,A,A,B,B,B,C,C,C,(1),(2),6.3 相似图形,“形状相同”的两个图形具有怎样的特征呢?,2下图(1)中的两个正方形“形状相同”,它们的边和角。
10、5.3 用待定系数法确定二次函数表达式,九年级(下册),初中数学,作 者:吴 昊(连云港市外国语学校),2还记得我们是怎样求一次函数和反比例函数的表达式吗?,1二次函数关系式有哪几种表达方式?,用待定系数法求解,一般式: yax2 bxc (a0),顶点式:y a(x h)2 k (a0),知识回顾,5.3 用待定系数法确定二次函数表达式,活动一:,例1 已知二次函数yax2 的图像经过点(2,8), 求a的值,由一般式yax2 bxc 确定二次函数的表达式,5.3 用待定系数法确定二次函数表达式,例2 已知二次函数yax2 c的图像经过点(2,8)和(1,5),求a、c的值,5.3 用待定系数法确。
11、第16章 二次根式随堂检测1、下列各式有意义的范围是x3的为( )A B C D2、计算(+)(-)的值是( )A1 B2 C3 D43、的值( )A.是正数 B.是负数 C.是非负数 D.可为正也可为负4、已知y0,化简=_5、比较大小:典例分析观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:=-1,=-,同理可得:=-,从计算结果中找出规律,并利用这一规律计算:(+)(+1)的值分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的解:原式=(-1+-+-+-)(+1)=(-1)(+1)=2009-1=2008.课下作业拓。
12、6.2 黄金分割,九年级(下册),作 者:张成培(连云港市西苑中学),初中数学,同学们,请问你们去过上海吗?参观过东方明珠电视塔吗?谈谈你的感想! 上海东方明珠电视塔设计巧妙,整个塔体挺拔秀丽,现请你度量出图中线段AB、BC、AC的长度,并计算线段AB与AC的比值和线段BC与AB的比值,6. 黄金分割,同学们,你们喜欢芭蕾舞吗?请欣赏一段芭蕾舞!,6. 黄金分割,芭蕾舞演员身体各部分之间适当的比例给人以匀称、协调的美感请你量出图中线段AB、BC、AC的长度,并计算线段AB与AC的比值和线段BC与AB的比值,6. 黄金分割,观察习题6.1第5题“你最喜欢。
13、6.1 图上距离与实际距离,九年级(下册),作 者:董海荣(连云港市西苑中学),初中数学,测量课桌的长与宽,精确到1cm,思考:“比”与“比值”一样吗?,问题1:写出长与宽的比,问题2:写出长与宽的比值,6.1 图上距离与实际距离,测量数学书的长与宽,精确到1cm,问题1:写出长与宽的比,问题2:写出长与宽的比值,比较:课桌的长与宽的比,数学书的长与宽的比值相等吗?,6.1 图上距离与实际距离,阅读课本P40的“尝试与交流”,在四条线段a、b、c、d中,如果a与b的比等于c与d的比,那么这四条线段叫做成比例线段,6.1 图上距离与实际距离,怎样判断4条。
14、30.1 二次函数,第三十章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,1.理解掌握二次函数的概念和一般形式.(重点) 2.会利用二次函数的概念解决问题. 3.会列二次函数表达式解决实际问题.(难点),雨后天空的彩虹,公园里的喷泉,跳绳等都会形成一条曲线.这些曲线能否用函数关系式表示?,导入新课,情境引入,1.什么叫函数?,一般地,在一个变化的过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.,3.一元二次方程的一般形式是什么?,一般地,形如y=kx+b(k,b是常。
15、小结与复习类型之一 二次函数的有关概念1下列函数:y1 x2,y ,y x(1 x ),y(12x)(1 2x)中,是二次21x2函数的有( )A1 个 B2 个 C3 个 D4 个2已知函数 y( m1)xm 2 15x3 是关于 x 的二次函数,则 m 的值为_类型之二 二次函数的图象和性质3二次函数 yx 22x 3 的图象大致是( )图 1X 14二次函数 yax 2bx c 的图象如图 1X 2 所示,则下列结论中错误的是 ( )图 1X 2A函数有最小值 B当1x2 时,y0Cabc 0 D当 x 时,y 随 x 的增大而减小125把抛物线 yax 2bx c 先向右平移 4 个单位,再向下平移 2 个单位,所得的图象的函数表达式是 yx 23x 5,则 abc。
16、专题训练(四)二次函数图像信息专题类型之一根据抛物线的特征确定a,b,c及与其有关的代数式的符号1.已知二次函数y=-x2+2bx+c,当x1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b-1 B.b-1C.b1 D.b12.2019通辽 在平面直角坐标系中,二次函数y=ax2+bx+c(a0)的图像如图4-ZT-1所示,现给出以下结论:abc3 B.a5。
17、第16章 二次根式时间:45分钟 分数:100分一、选择题(每小题2分,共20分)1 下列式子一定是二次根式的是( )A B C D2若,则( )Ab3 Bb3 Cb3 Db33若有意义,则m能取的最小整数值是( )Am=0 Bm=1 Cm=2 Dm=34若x0,则的结果是( )A0 B2 C0或2 D25(岳阳)下列二次根式中属于最简二次根式的是( )A B C D6如果,那么( )Ax0 Bx6 C0x6 Dx为一切实数7(湖南长沙)小明的作业本上有以下四题:;。做错的题是( )A B C D8化简的结果为( )A B 。
18、第16章 二次根式时间:45分钟 分数:100分一、选择题(每小题2分,共20分)1下列说法正确的是( )A若,则a0 D5(湖北武汉)已知ab,化简二次根式的正确结果是( )A BC D6把根号外的因式移到根号内,得( )A B C D7下列各式中,一定能成立的是( )A BC=x-1 D8若x+y=0。
19、二次函数解析式的求法,zxxkw,二次函数的解析式有哪些?,一般式:y=ax+bx+c (a0),顶点式:y=a(x-h)+k (a0),交点式:y=a(x-x1)(x-x2) (a0),问题2 如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶它的拱宽AB为4 m,拱高CO为0.8 m施工前要先制造建筑模板,怎样画出模板的轮廓线呢?,分 析 为了画出符合要求的模板,通常要先建立适当的直角坐标系,再写出函数的关系式,然后根据这个关系式进行计算,放样画图,(0,0.8),(2,0.8),(2,0.8),问题1:,求二次函数关系式 已知图象过点(1,-4)(0,1)( - 2, 2)2 已知图象的顶点(,。
20、二次函数同步综合练习卷一选择题1下列函数中属于二次函数的是( )A y x( x+1) B x2y1C y2 x22( x2+1) D y2若 b0 时,二次函数 y ax2+bx+a21 的图象如下列四图之一所示,根据图象分析,则 a 的值等于( )A1 B1 C D3设函数 y kx2+(3 k+2) x+1,对于任意负实数 k,当 x m 时, y 随 x 的增大而增大,则 m 的最大整数值为( )A2 B2 C1 D04若二次函数 y x26 x+c 的图象过 A(1, a) , B(2, b) , C(5, c) ,则下列正确的是( )A a b c B a c b C b a c D c a b5已知抛物线 c: y x2+2x3,将抛物线 c 平移得到抛物线 c,如果。