,导入新课,讲授新课,当堂练习,课堂小结,19.2 平面直角坐标系,第十九章 平面直角坐标系,第2课时 点的位置与点的坐标的关系,学习目标,1.掌握平面直角坐标系各象限、坐标轴上点的坐标特征;(重点) 2.掌握点关于坐标轴及原点的对称点的坐标特征.(重点),导入新课,观察与思考,1.两条坐标轴把平面
冀教版九年级数学下册31.2第2课时概率的简单应用课件Tag内容描述:
1、,导入新课,讲授新课,当堂练习,课堂小结,19.2 平面直角坐标系,第十九章 平面直角坐标系,第2课时 点的位置与点的坐标的关系,学习目标,1.掌握平面直角坐标系各象限、坐标轴上点的坐标特征;(重点) 2.掌握点关于坐标轴及原点的对称点的坐标特征.(重点),导入新课,观察与思考,1.两条坐标轴把平面分成了几部分(不包括坐标轴)?,2.原点O的坐标是什么?x 轴和y轴上的点的坐标有什么特征?,y,O,x,1,2,3,1,2,3,-1,-2,-3,-4,-1,-2,-3,(纵轴),(横轴),讲授新课,在平面直角坐标系中,两条坐标轴(即横轴和纵轴)把平面分成如图所示的, ,四个区域。
2、,导入新课,讲授新课,当堂练习,课堂小结,第2课时 二次函数y=a(x-h)2和y=a(x-h)2+k的图像和性质,30.2 二次函数的图像和性质,第三十章 二次函数,学习目标,1.会用描点法画出y=a(x-h)2和y=a(x-h)2+k (a 0)的图像. 2.掌握二次函数y=a(x-h)2和y=a(x-h)2+k (a 0)的图像的性质并会应用.(重点) 3.理解二次函数y=a(x-h)2和y=a(x-h)2+k (a 0)与y=ax2 (a 0)之间的联系.(难点),导入新课,复习引入,向上,向下,y轴(直线x=0),y轴(直线x=0),(0,c),(0,c),当x0时,y随x增大而增大.,当x0时,y随x增大而减小.,x=0时,y最小值=c,x=0时,y最大值=c,问题1。
3、,导入新课,讲授新课,当堂练习,课堂小结,22.1 平行四边形的性质,第二十二章 四边形,第2课时 平行四边形的性质定理2,1.掌握平行四边形对角线互相平分的性质;(重点) 2.经历对平行四边形性质的猜想与证明的过程,渗透转化思想, 体会图形性质探究的一般思路.(难点),导入新课,分享蛋糕的故事,视频中的小朋友所说的那块蛋糕是最大的吗?为什么?,讲授新课,我们知道平行四边形的边角这两个基本要素的性质,那么平行四边形的对角线又具有怎样的性质呢?,如图,在ABCD中,连接AC,BD,并设它们相交于点O.,OA与OC,OB与OD有什么关系?,猜一猜,OA=OC,O。
4、,导入新课,讲授新课,当堂练习,课堂小结,19.4 坐标与图形的变化,第十九章 平面直角坐标系,第2课时 图形的轴对称、放缩与坐标变化,学习目标,1.在同一直角坐标系内,感受坐标变化而使图形对称、扩大和缩小的过程,并能得出图形对称、扩大和缩小的规律.(重点、难点) 2.通过探索图形上点的坐标变化与图形变换之间的关系,进一步体会数形结合的数学思想.,沿着某一直线对折,直线两旁的部分能够完全重合的图形就是轴对称图形;这条直线称为对称轴.,a称为点P的横坐标, b称为点P的纵坐标.,导入新课,复习引入,a,b,ABC与A1B1C1关于x轴对称,讲授新课。
5、角,算一算,填空。,填一填。,(2),(3),30,50,8,1,7,90,50,30元可以买哪两样物品?,和,和,和,;,;,。,笑笑买了一架,和一辆,一共需要多少元?,,,12 + 9 = 21 (元),答:一共需要21元。,。
6、,导入新课,讲授新课,当堂练习,课堂小结,21.2 一次函数的图像与性质,第二十一章 一次函数,第2课时 一次函数的性质,学习目标,1.掌握一次函数的性质(重点) 2.能灵活运用一次函数的图象与性质解答有关问题(难点),导入新课,复习引入,1.一次函数图象有什么特点?,2.作出一次函数图象需要描出几个点?,只需要描出2个点.,一次函数y=kx+b的图象是一条直线,直线上所有点的坐标都满足表达式y=kx+b.,一般选直线与两坐标轴的两交点,即(0,b)和( ,0).,画一画1:在同一坐标系中作出下列函数的图象.,(1),(2),(3),-3,O,-2,2,3,1,2,3,-1,-1,-2,x。
7、30.4 二次函数的应用,导入新课,讲授新课,当堂练习,课堂小结,第2课时 实际问题中二次函数的最值问题,第三十章 二次函数,学习目标,1.分析实际问题中变量之间的二次函数关系.(难点) 2. 能应用二次函数的性质解决图形中最大面积问题.(重点) 3.能应用二次函数的性质解决商品销售过程中的最大利润问题.(重点) 4.弄清商品销售问题中的数量关系及确定自变量的取值范围. (难点),导入新课,情境引入,思考:在日常生活中存在着许许多多的与数学知识有关的实际问题.解决生活中面积的实际问题时,你会用到了什么知识?商品买卖过程中,作为商家追。
8、30.2 二次函数的图像和性质,导入新课,讲授新课,当堂练习,课堂小结,第1课时 二次函数y=ax的图像和性质,第三十章 二次函数,学习目标,1.正确理解抛物线的有关概念.(重点) 2.会用描点法画出二次函数y=ax的图像,概括出图像的特点.(难点) 3.掌握形如y=ax的二次函数图像的性质,并会应用.(难点),导入新课,情境引入,讲授新课,例1 画出二次函数y=x2的图像.,9,4,1,0,1,9,4,典例精析,1. 列表:在y = x2 中自变量x可以是任意实数,列表表示几组对应值:,2. 描点:根据表中x,y的数值在坐标平面中描点(x,y),3. 连线:如图,再用平滑曲线顺次连。
9、,导入新课,讲授新课,当堂练习,课堂小结,21.4 一次函数的应用,第二十一章 一次函数,第1课时 单个一次函数的应用,学习目标,1.掌握单个一次函数图象的应用(重点) 2.了解一次函数与一元一次方程的关系(难点),导入新课,回顾与思考,1.由一次函数的图象可确定k 和 b 的符号; 2.由一次函数的图象可估计函数的变化趋势; 3.可直接观察出:x与y 的对应值; 4.由一次函数的图象与y 轴的交点的坐标可确定b值, 从而确定一次函数的图象的表达式.,从一次函数图象可获得哪些信息?,讲授新课,引例:由于持续高温和连日无雨,某水库的蓄水量随着时间的增加。
10、,导入新课,讲授新课,当堂练习,课堂小结,18.2 抽样调查,第十八章 数据的收集与整理,第2课时 样本的代表性,学习目标,1.明确抽样调查的优点和局限性,样本的选取必须具有代表性.(重点) 2.会设计恰当的抽样调查方案.(难点),导入新课,1936年,美国文学文摘杂志根据电话簿上的地址和俱乐部成员名单上的地址发出1000万封信所收的调查意见,断言兰登将以370:161的优势在总统选举中击败罗斯福.但结果恰好相反,罗斯福当选了.文学文摘大丢面子,原因何在呢?,情境引入,情境1:1949年,美国某杂志报道:1924年从耶鲁大学毕业的学生目前的年收入一。
11、,导入新课,讲授新课,当堂练习,课堂小结,20.2 函数,第二十章 函数,情境引入,1.能根据简单的实际问题写出函数表达式,并确定自变量的取值范围(重点、难点),做一做:请用含自变量的式子表示下列问题中的函数关系:(1)汽车以60 km/h 的速度匀速行驶,行驶的时间为 t(单位:h),行驶的路程为 s(单位:km);(2)多边形的边数为 n,内角和的度数为 y,问题(1)中,t 取-2 有实际意义吗? 问题(2)中,n 取2 有意义吗?,导入新课,复习引入,问题:上节课时的三个问题中,要使函数有意义,自变量能取哪些值?,自变量t的取值范围:_,t0,情景。
12、,导入新课,讲授新课,当堂练习,课堂小结,21.4 一次函数的应用,第二十一章 一次函数,第2课时 两个一次函数的综合应用,学习目标,1.掌握两个一次函数图象的应用(重点) 2.能利用函数图象解决数学问题(难点),导入新课,观察与思考,20,0,40,60,80,100,单位:cm,观察下图,你能发现它们三条函数直线之间的差别吗?,讲授新课,x/吨,y/元,O,1,2,3,4,5,6,1000,4000,5000,2000,3000,6000,引例:l1 反映了某公司产品的销售收入与销售量的关系,根据图意填空:,l1,当销售量为2吨时,销售收入 元,,2000,销售收入,x/吨,y/元,O,1,2,3,4,5,6,1000,4000,500。
13、,导入新课,讲授新课,当堂练习,课堂小结,22.4 矩形,第二十二章 四边形,第2课时 矩形的判定,学习目标,1.经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理(重点) 2.能应用矩形的判定解决简单的证明题和计算题.(难点),复习引入,导入新课,问题1 矩形的定义是什么?,有一个角是直角的平行四边形叫做矩形.,问题2 矩形有哪些性质?,矩形,边:,角:,对角线:,对边平行且相等,四个角都是直角,对角线互相平分且相等,思考 工人师傅在做门窗或矩形零件时,如何确保图形是矩形呢?现在师傅带了两种工具(卷尺和量角器),他说用这两种工具。
14、,导入新课,讲授新课,当堂练习,课堂小结,22.5 菱形,第二十二章 四边形,第2课时 菱形的判定,1.经历菱形判定定理的探究过程,掌握菱形的判定定理(重点)2.会用这些菱形的判定方法进行有关的证明和计算. (难点),一组邻边相等,有一组邻边相等的平行四边形叫做菱形,菱形的性质,菱形,两组对边平行,四条边相等,两组对角分别相等,邻角互补,两条对角线互相垂直平分 每一条对角线平分一组对角,边,角,对角线,复习引入,导入新课,问题 菱形的定义是什么?性质有哪些?,根据菱形的定义,可得菱形的第一个判定的方法:,AB=AD,,四边形ABCD是平行四边形,。
15、,导入新课,讲授新课,当堂练习,课堂小结,32.2 视图,第2课时 较复杂几何体的三视图,第三十二章 投影与视图,1.会辨别复杂的几何体的三视图. (重点) 2.会画复杂的几何体的三视图.(重点) 3.明确三视图中实线和虚线的区别.(难点),学习目标,问题:请画出下面几何图形的三视图.,主视图,左视图,俯视图,导入新课,复习引入,画一画:画出下图的四棱柱的三视图.,解析:在画视图时,看得见部分的轮廓要画成实线,看不见部分的轮廓线要画成虚线.,主视图,左视图,俯视图,讲授新课,例1 画出如图所示的几何体的三视图,分析:该几何体由两个大小不等的长。
16、32.2 视 图,导入新课,讲授新课,当堂练习,课堂小结,第1课时 简单的几何体的三视图,第三十二章 投影与视图,学习目标,1.理解视图及三视图的概念. 2.会辨别几何体的三种视图,能熟练画出几何体的三种视图. (重点),导入新课,情境引入,“横看成岭侧成峰,远近高低各不同不识庐山真面目,只缘身在此山中”你能说明是什么原因吗?,问题:观察下面图形,假如有一束平形光从正面、左面、上面照射到物体上,请分别画出不同方向的正投影图形?,讲授新课,观察与思考,下图为某飞机的设计图,你能指出这些设计图是从哪几个方向来描绘物体的吗?,问题:怎样才。
17、31.4 用列举法求简单事件概率,第1课时 用列表法求简单事件的概率,导入新课,讲授新课,当堂练习,课堂小结,第三十一章 随机事件的概率,1.理解一元二次方程的概率.(难点) 2.根据一元二次方程的一般形式,确定各项系数. 3.理解并灵活运用一元二次方程概念解决有关问题. (重点),导入新课,情境引入,我们在日常生活中经常会做一些游戏,游戏规则制定是否公平,对游戏者来说非常重要,其实这是一个游戏双方获胜概率大小的问题.,思考:那么求出概率 大小有什么方法呢,小明,小颖,小凡,连续抛掷两枚均匀的硬币,如果两枚正面朝上,则小明获胜;如果。
18、,导入新课,讲授新课,当堂练习,课堂小结,第2课时 用树形图法求简单事件的概率,31.4 用列举法求简单事件概率,第三十一章 随机事件的概率,学习目标,1.进一步理解等可能事件概率的意义. 2.学习运用树形图计算事件的概率. 3.进一步学习分类思想方法,掌握有关数学技能.,导入新课,问题引入,现有A、B、C三盘包子,已知A盘中有两个酸菜包和一个糖包,B盘中有一个酸菜包和一个糖包和一个韭菜包,C盘中有一个酸菜包和一个糖包以及一个馒头.老师就爱吃酸菜包.如果老师从每个盘中各选一个包子(馒头除外),那么老师选的包子全部是酸菜包的概率是多少。
19、31.2 随机事件的概率,第1课时 概率的认识,导入新课,讲授新课,当堂练习,课堂小结,第三十一章 随机事件的概率,1.理解一个事件概率的意义. 2.会在具体情境中求出一个事件的概率.(重点) 3.会进行简单的概率计算及应用.(难点),学习目标,必然事件:在一定条件下必然发生的事件. 不可能事件:在一定条件下不可能发生的事件. 随机事件:在一定条件下可能发生也可能不发生的事件.,导入新课,问题 回顾一下上节课学到的“必然事件”“不可能事件”“随机事件”的定义?,复习引入,随机事件,守株待兔,随机事件发生的可能性究竟有多大?能否用数值来刻。
20、,导入新课,讲授新课,当堂练习,课堂小结,第2课时 概率的简单应用,31.2 随机事件的概率,第三十一章 随机事件的概率,1.能判断某事件的每个结果出现的可能性是否相等; 2.会进行简单的概率计算及应用.(难点),学习目标,老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢.请问,你们觉得这个游戏公平吗?,我们一起来做游戏,导入新课,情境引入,讲授新课,同时掷两枚硬币,试求下列事件的概率:(1)两枚硬币两面一样;(2)一枚硬币正面朝上,一枚硬币反面朝上;,探索交流,“掷两枚硬币”所有结果如下:,正。