公式法因式分解

完全平方公式测试题一.选择题1、把多项式3x3-6xy+3xy分解因式结果正确的是()A.x(3x+y)(x-3y)B.3x(x-2xy+课时1匀变速直线运动的速度公式和位移公式第三节从自由落体到匀变速直线运动学习目标1.掌握匀变速直线运动的速度公式和位移公式,并会应用公式进行有关计算.2.掌握并会

公式法因式分解Tag内容描述:

1、高中数学常用公式及常用结论1. 元素与集合的关系, .UxACxAx2.德摩根公式 .();()UUUBBC3.包含关系 AAAR4.容斥原理 ()()cardBcardBcard()CCcrB.() ()AcardC5集合 的子集个数共有 个;真子集有 1 个;非空子集有 12,n 2n2n2n1 个;非空的真子集有 2 个.6.二次函数的解析式的三种形式(1)一般式 ;()(0)fxabc(2)顶点式 ;2)hka(3)零点式 .1x7.解连不等式 常有以下转化形式(NfM()fx)()0fN|2x.1()fx8.方程 在 上有且只有一个实根,与 不等价,前者是后0)(21k 0)(21kf者的一个必要而不是充分条件.特别地, 方程 有且只有一个实根在2acbxa内,等价于 ,或 。

2、2.3 用公式法求解一元二次方程,第二章 一元二次方程,第1课时 用公式法求解一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.理解一元二次方程求根公式的推导过程. 2.会用公式法解一元二次方程.(重点) 3.会用根的判别式b2- 4ac判断一元二次方程根的情况及相关应用(难点),问题:说一说用配方法解系数不为1的一元二次方程的步骤?,基本步骤如下: 将二次项系数化为1. 将常数项移到方程的右边,是左边只有二次项和一次项. 两边都加上一次项系数一半的平方. 直接用开平方法求出它的解.,导入新课,做一做:你能用配方法解方程 a。

3、第21章:一元二次方程,人教版九年级上册,21.2 解一元二次方程,21.2.2 公式法,用配方法解一元二次方程的步骤,1._移到方程右边. 2.二次项系数化为; 3.将方程左边配成一个_式。 (两边都加上_) 4.用_写出原方程的解。,常数项,完全平方,一次项系数一半的平方,平方根的意义,一、知识回顾,学习目标: 1.理解用配方法推导一元二次方程求根公式的 过程,明确运用公式求根的前提条件是:b2-4ac0 2.会用公式法解简单系数的一元二次方程.,二、目标展示,解:移项,得:,配方,得:,由此得:,二次项系数化为1,得,(1).用配方法解方程:,请问:一元二次方。

4、14.2 乘法公式同步测试一、单选题1. 下列各式中,运算正确的是( )A.(a 3) 2=a5 B.(ab) 2=a2b 2 C.a6a2=a4 D.a2+a2=2a42. 下列运算正确的是( )A.(ab 2) 3(ab 2) 2=ab 2 B.3a+2a=5a2C.(2a+b)(2ab)=2a 2b 2 D.(2a+b) 2=4a2+b23. 下列计算正确的是( )A.a2+a2=a4B.a2a3=a6C.(a 2) 2=a4D.(a+1) 2=a2+14. 若 a2b 2= ,a+b= ,则 ab 的值为( )18A. B. C.1 D.25. 若 x2xy+2=0,y 2xy4=0,则 xy 的值是( )A.2 B.2 C.2 D. 26. 若 x22(m-3)x16 是完全平方式,则 m的值等于( )A.3 B.-5 C.7 D.7或-17. 如图,边长为(m3)的。

5、21.2.2 公式法,1.理解一元二次方程求根公式的推导过程; 2.了解公式法的概念; 3.会熟练应用公式法解一元二次方程,(4)配方、用直接开平方法解方程.(x+ )2= -q,x2+px+( )2= -q+( )2,2、用配方法解一元二次方程的步骤: (1)把原方程化成 x2+px+q=0的形式; (2)移项整理 得 x2+px=-q; (3)在方程 x2+px=-q 的两边同加上一次项系数p的一半的平方;,1、请用配方法解一元二次方程2x2+4x+1=0,用配方法解一般形式的一元二次方程 ax2+bx+c=0 (a0),解析:把方程两边都除以a,即 ( x + )2 =,移项,得 x2 + x= -,配方,得 x2 + x+( )2=- +( )2,。

6、第2课时,14.4.2 公式法,1.理解完全平方公式的特点 2.能较熟练地运用完全平方公式分解因式 3.会用提公因式、完全平方公式分解因式,并能说出提公因式在这类因式分解中的作用,1.利用平方差公式分解因式,a2b2=(a+b)(a-b),2.分解因式应注意的问题,(1)左边是多项式的形式,右边应是整式乘积的形式.,(2)因式分解的步骤是首先提取公因式,然后考虑用公式.,(3)因式分解应进行到每一个因式不能分解为止.,我们知道,因式分解是整式乘法的反过程,逆用乘法公式,我们学习了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然。

7、第1课时,14.4.2 公式法,1.运用完全平方公式分解因式,能说出完全平方公式的特点. 2.会用提公因式法与公式法分解因式 3.培养学生的观察、联想能力,进一步了解换元的思想方法, 并能说出提公因式法在这类因式分解中的作用.,1.什么是因式分解?,把一个多项式分解成几个 整式的积的形式.,如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?,2.什么是提公因式法分解因式?,在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.,3.判断下列各式是因式分解的是 . (。

8、第2课时,14.2.2 完全平方公式,1.理解添括号法则. 2. 利用添括号法则灵活应用完全平方公式 3.进一步熟悉乘法公式,体会公式中字母的含义,请同学们完成下列运算并回忆去括号法则 (1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c),【解析】(1)4+(5+2)=4+5+2=11(2)4-(5+2)=4-5-2=-3 或:4-(5+2)=4-7=-3(3)a+(b+c)=a+b+c (4)a-(b-c)=a-b+c,去括号法则:去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不改变符号;如果括号前是负号,去掉括号后,括号里的各项都改变符号,左边没括号,右边有括号,也。

9、第1课时,14.2.2 完全平方公式,1.经历完全平方公式的推导过程、几何解释,进一步 发展符号感和推理能力 2.理解完全平方公式的结构特征并能灵活应用公式进 行计算,a2,b2,一位老人非常喜欢孩子每当有孩子到他家做客时,老人都要拿出糖果招待他们来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘, (1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖? (2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?,(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖? (4)。

10、14.2 乘法公式 14.2.1 平方差公式,1.经历探索平方差公式的过程,会推导平方差公式; 2.理解平方差公式的结构特征,灵活应用平方差公式,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.,(a+b)(m+n)=am+an+bm+bn.,回忆:多项式与多项式相乘的法则,(x+1)(x1); (2) (a+2)(a2);(3) (3x)(3+x) ; (4) (2x+1)(2x1).,观察上述算式,你能发现什么规律?运算出结果后,你又发现什么规律?,等号的左边:两个数的和与差的积, 等号的右边:是这两个数的平方差.,= a24,=4 x21,平方差公式:,(a+b)(a b)=,a2 b2.,即。

11、9.14 公式法,我们来试一试看谁算得快:6782-3782 852-842你想知道怎么才能算得快吗?,活动一 将边长为a的正方形一角减去一个边长为b的小正方形,观察你剪剩下的部分。思考:怎样计算它的面积?,a2b2 = (ab)(ab),a - b = (a+b)(a-b),因式分解,平方差公式: (a+b)(a-b) = a - b,整式乘法,(一)运用平方差公式分解因式,例1.把下列各式分解因式 (1)16a- 1 ( 2 ) 4x- mn( 3 ) x - y,9,25,1,16,( 4 ) 9x + 4,解:1)16a-1=(4a) - 1=(4a+1)(4a-1),解:2) 4x- mn=(2x) - (mn)=(2x+mn)(2x-mn),例2.把下列各式因式分解 ( x + z 。

12、9.12 完全平方公式,用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.,1、多项式的乘法法则是什么?,am+an,bm+bn,+,=,(m+n),(a+b),观 察,计算下列各式,你能发现它们的运算形式与结果有什么规律吗?,(1)(x1)2 (x1)(x1) _,(3)(x1)2 (x1)(x1) _,(2)(m2)2 _,(4)(m2)2 _,x2 2x 1,x2 2x 1,m24m4,m24m4,观 察,a2b2与(ab)2有什么区别?,怎样计算(ab)2呢?,解:(ab)2 =(ab)(ab) =a2ababb2 =a22abb2,完全平方公式的数学表达式:,完全平方公式的文字叙述:,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2。

13、9.11 平方差公式,一、复习引入、温故知新,温故: 多项式的乘法法则多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。,(a+b)(m+n)=,am+an+bm+bn,思考1:计算下列各题,并观察下列乘式与结果的特征:(1) (y+2)(y-2)=(2) (3-a)(3+a)=(3) (2a+b)(2a-b)=,你发现了什么规律?,比较等号左右两边: 左边:两个数的和与这两个数的差的积 右边:这两个数的平方差,y2-22,32-a2,(2a)2-b2,猜想(a+b)(ab)=?,二、推导公式、揭示内涵,平方差公式:两个数的和与这两个数的差的乘积等于这两个数的平方差,即,你能想办法。

14、14.3.2 公式法,第十四章 整式的乘法与因式分解,导入新课,讲授新课,当堂练习,课堂小结,第2课时 运用完全平方公式因式分解,1.理解并掌握用完全平方公式分解因式(重点) 2.灵活应用各种方法分解因式,并能利用因式分解进行计算(难点),导入新课,复习引入,1.因式分解:,把一个多项式转化为几个整式的积的形式.,2.我们已经学过哪些因式分解的方法?,1.提公因式法,2.平方差公式,a2-b2=(a+b)(a-b),讲授新课,你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?,同学们拼出图形为:,这个大正方形的面积可以怎么求?,(a+b)2,a2+2ab+b。

15、14.3.2 公式法,第十四章 整式的乘法与因式分解,导入新课,讲授新课,当堂练习,课堂小结,第1课时 运用平方差公式因式分解,八年级数学上(RJ)教学课件,1.探索并运用平方差公式进行因式分解,体会转化 思想(重点) 2.能会综合运用提公因式法和平方差公式对多项式进 行因式分解(难点),导入新课,情境引入,如图,在边长为a米的正方形上剪掉一个边长为b米的小正方形,将剩余部分拼成一个长方形,根据此图形变换,你能得到什么公式?,a2- b2=(a+b)(a-b),讲授新课,想一想:多项式a2-b2有什么特点?你能将它分解因式吗?,是a,b两数的平方差的形式,。

16、1对3辅导讲义学员姓名: 学科教师:年 级: 辅导科目:授课日期时 间主 题第12讲 因式分解之公式法学习目标1理解平方差公式的意义,弄清公式的形式和特点,并运用对比的方法弄清两种“平方差公式”的区别与联系,会初步运用平方差公式分解因式;2会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法教学内容(以提问的形式回顾)回顾:复习乘法公式1 2 逆用乘法公式将一个多项式分解因式的方法叫公式法。因式分解的平方差公式:平方差公式的特征:公式左边是两个数的平方差,右边是两个因式积的形式,。

17、1对3辅导讲义学员姓名: 学科教师:年 级: 辅导科目:授课日期时 间主 题第12讲 因式分解之公式法学习目标1理解平方差公式的意义,弄清公式的形式和特点,并运用对比的方法弄清两种“平方差公式”的区别与联系,会初步运用平方差公式分解因式;2会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法教学内容回顾:复习乘法公式1 2 逆用乘法公式将一个多项式分解因式的方法叫公式法。 因式分解的平方差公式:练习:下列多项式能用平方差公式分解因式吗?如果可以,请分解因式: 因式分解的完全平方公式。

18、课时1 匀变速直线运动的速度公式和位移公式,第三节 从自由落体到匀变速直线运动,学习目标 1.掌握匀变速直线运动的速度公式和位移公式,并会应用公式进行有关计算. 2.掌握并会推导匀变速直线运动的两个推论,并能进行有关的计算. 3.理解公式中各物理量的物理意义及符号的确定.,内容索引,自主预习 预习新知 夯实基础,重点探究 启迪思维 探究重点,达标检测 检测评价 达标过关,自主预习,一、匀变速直线运动规律 公式 (1)速度公式:vt . (2)位移公式:s . 二、用vt图象求位移 在匀速直线运动的vt图象中,图线和坐标轴所围的面积在数值上等于物。

19、 完全平方公式测试题一. 选择题1、把多项式 3x3-6xy+3xy分解因式结果正确的是( )A. x(3x+y)(x-3y) B. 3x(x-2xy+y)C. x(3x-y) D. 3x(x-y)2、下列各式是完全平方公式的是( )A. 16x-4xy+y B. m+mn+nC. 9a-24ab+16b D. c+2cd+ c143、下列因式分解正确的是( )A. 4-x+3x=(2-x)(2+x)+3xB. -x-3x+4=(x+4)(x-1)C. 1-4x+4x=(1-2x) D. xy-xy+x3y=x(xy-y+xy)4、下列多项式 x+xy-y -x+2xy-y xy+x+y 1-x+ 其中能用完x24全。

【公式法因式分解】相关PPT文档
21.2.2《公式法》课件
人教版数学九年级上21.2.2公式法课件
人教版数学八年级上14.2.1平方差公式课件
【公式法因式分解】相关DOC文档
标签 > 公式法因式分解[编号:16257]