高考数学三角函数

第四章 三角函数、解三角形 考试内容 等级要求 三角函数的概念 B 同角三角函数的基本关系式 B 三角函数的诱导公式 B 正弦函数、余弦函数、正切函数的图象与性质 B 函数yAsin(x)的图象与性质 A 两角和(差)的正弦、余弦及正切 C 二倍角的正弦、余弦及正切 B 正弦定理、余弦定理及其应用

高考数学三角函数Tag内容描述:

1、第四章 三角函数、解三角形考试内容等级要求三角函数的概念B同角三角函数的基本关系式B三角函数的诱导公式B正弦函数、余弦函数、正切函数的图象与性质B函数yAsin(x)的图象与性质A两角和(差)的正弦、余弦及正切C二倍角的正弦、余弦及正切B正弦定理、余弦定理及其应用B4.1任意角、弧度制及任意角的三角函数考情考向分析以理解任意角三角函数的概念、能进行弧度与角度的互化和扇形弧长、面积的计算为主,常与向量、三角恒等变换相结合,考查三角函数定义的应用及三角函数的化简与求值,考查分类讨论思想和数形结合思想的应用意识题型以填空题。

2、 三角函数的应用及利用三角函数测高 第4讲 适用学科 初中数学 适用年级 初中三年级 适用区域 北师版区域 课时时长(分钟) 120 知识点 1.三角函数的一般应用 2.用三角函数解方位角、视角问题 3.利用三角函数测高 教学目标 1.掌握三角函数的应用 2.掌握利用三角函数解决实际问题 教学重点 能熟练掌握利用三角函数解决实际问题 教学难点 能熟练掌握利用三角函数解决实际问题 。

3、专题 18 三角函数三角形平面向量高考常考题型解题方法一、本专题要特别小心:1.平面向量的几何意义应用2. 平面向量与三角形的综合3. 三角形的边角互化4.向量的数量积问题等综合问题 5. 向量夹角为锐角、钝角时注意问题6.三角形中角的范围7.正余弦定理综合。二 【题型方法】(一)考查平面向量基本定理例 1. 设 D为 ABC所在平面内一点,若 3BCD,则下列关系中正确的是( )A 143B 14AC D 3【答案】A【解析】 3B C =3( D AC); A= 43 1.故选:C.练习 1设四边形 ABCD 为平行四边形, , .若点 M,N 满足 , ,则|=6 |=4 =3=2( )=A20 B15 C9。

4、高中数学考点12 三角函数的基本概念、同角三角函数的基本关系与诱导公式1了解角、角度制与弧度制的概念,掌握弧度与角度的换算.2理解正弦函数、余弦函数、正切函数的定义.3理解同角三角函数的基本关系,掌握正弦、余弦、正切的诱导公式.一、角的有关概念1定义角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形2分类(1)按旋转方向不同分为正角、负角、零角(2)按终边位置不同分为象限角和轴线角(3)终边相同的角:所有与角终边相同的角,连同角在内,可构成一个集合3象限角与轴线角第一象限角的集合为;第二象限。

5、高考专题突破二高考中的三角函数与解三角形问题题型一三角函数的图象和性质例1(2016山东)设f(x)2sin(x)sinx(sinxcosx)2.(1)求f(x)的单调递增区间;(2)把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到函数yg(x)的图象,求g的值解(1)由f(x)2sin(x)sinx(sinxcosx)22sin2x(12sinxcosx)(1cos2x)sin2x1sin2xcos2x12sin1.由2k2x2k(kZ),得kxk(kZ)所以f(x)的单调递增区间是(kZ).(2)由(1)知f(x)2sin1,把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y2sin1的图象,再把得到。

6、1三角函数的图象,主要涉及图象变换问题以及由图象确定解析式问题,主要以选择题、填空题的形式考查; 2利用三角函数的性质求解三角函数的值、参数、最值、值域、单调区间等,主要以解答题的形式考查; 3三角函数的化简与求值是高考的命题热点,其中同角三角函数的基本关系、诱导公式是解决计算问题的工具,三角恒等变换是利用三角恒等式 (两角和与差、二倍角的正弦、余弦、正切公式 )进行变换, “ 角 ” 的变换是三 角恒等变换的核心 1常用三种函数的图象性质 (下表中 k Z) 函数 y sin x y cos x y tan x 图象 递增 区间 2222kk , 22kk。

7、1.2任意角的三角函数12.1任意角的三角函数第1课时任意角的三角函数学习目标1.通过借助单位圆理解并掌握任意角的三角函数定义,了解三角函数是以实数为自变量的函数.2.借助任意角三角函数的定义理解并掌握正弦、余弦、正切函数值在各象限内的符号知识点一任意角的三角函数前提如图,设是一个任意角,P(x,y)是它的终边上任意一点定义正弦比值叫做的正弦,记作sin ,即sin 余弦比值叫做的余弦,记作cos ,即cos 正切比值(x0)叫做的正切,记作tan ,即tan 三角函数正弦、余弦、正切都是以角为自变量,以角的终边上点的坐标的比值为函数值的函。

8、专题 04 三角函数的应用一、本专题要特别小心:1.图象的平移(把系数提到括号的前边后左加右减)2. 图象平移要注意未知数的系数为负的情况3. 图象的横坐标伸缩变换要注意是加倍还是变为几分之几4.五点作图法的步骤 5.利用图象求周期6.已知图象求解析式二【学习目标】1理解三角函数的定义域、值域和最值、奇偶性、单调性与周期性、对称性2会判断简单三角函数的奇偶性,会求简单三角函数的定义域、值域、最值、单调区间及周期3理解三角函数的对称性,并能应用它们解决一些问题三 【方法总结】1.三角函数奇偶性的判断与其他函数奇偶性的判断。

9、2020年高考文科数学三角函数题型归纳与训练【题型归纳】题型一 定义法求三角函数值例1若的终边所在直线经过点,则 【答案】【解析】直线经过二、四象限,又点P在单位圆上,若的终边在第二象限,则,若的终边在第四象限,则,综上可知【易错点】容易忽视对角终边位置进行讨论【思维点拨】定义法求三角函数值的两种情况:(1)已知角终边上一点P的坐标,则可先求出点P到原点的距离r,然后利用三角函数的定义求解(2)已知角的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题。

10、4.2同角三角函数基本关系式及诱导公式最新考纲考情考向分析1.理解同角三角函数的基本关系式:sin2xcos2x1,tan x2.能利用单位圆中的三角函数线推导出,的正弦、余弦、正切的诱导公式.考查利用同角三角函数的基本关系、诱导公式解决条件求值问题,常与三角恒等变换相结合起到化简三角函数关系的作用,强调利用三角公式进行恒等变形的技能以及基本的运算能力题型为选择题和填空题,低档难度.1.同角三角函数的基本关系(1)平方关系:sin2cos21.(2)商数关系:tan (k,kZ).2.诱导公式公式一二三四五角2k(kZ)(2k1)(kZ)正弦sin sin sin cos cos 余。

11、高考专题突破二 高考中的三角函数与解 三角形问题,第四章 三角函数、解三角形,NEIRONGSUOYIN,内容索引,题型分类 深度剖析,课时作业,题型分类 深度剖析,1,PART ONE,题型一 三角函数的图象和性质,例1 (2016山东)设f(x)2 sin(x)sin x(sin xcos x)2. (1)求f(x)的单调递增区间;,师生共研,把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),,三角函数的图象与性质是高考考查的重点,通常先将三角函数化为yAsin(x)k的形式,然后将tx视为一个整体,结合ysin t的图象求解.,(1)函数f(x)的最小正周期;,(2)函数f(x)的单调区间;,(3)函数f(。

12、高考专题突破二高考中的三角函数与解三角形问题题型一三角函数的图象和性质例1设f(x)2sin(x)sinx(sinxcosx)2.(1)求f(x)的单调递增区间;(2)把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到函数yg(x)的图象,求g的值解(1)由f(x)2sin(x)sinx(sinxcosx)22sin2x(12sinxcosx)(1cos2x)sin2x1sin2xcos2x12sin1.由2k2x2k(kZ),得kxk(kZ)所以f(x)的单调递增区间是(kZ).(2)由(1)知f(x)2sin1,把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y2sin1的图象,再把得到的图象向左。

13、三角函三角函数与解三角形数与解三角形 三角函数是一种重要的基本初等函数, 它是描述周期现象的一个重要函数模型, 可以加 深对函数的概念和性质的理解和运用其主要内容包括:三角函数的概念、三角变换、三角 函数、解三角形等四部分 在掌握同角三角函数的基本关系式、 诱导公式、 两角和与两角差、 二倍角的正弦、 余弦、 正切公式的基础上,能进行简单三角函数式的化简、求值和恒等式证明;理解并能正确解决 正弦函数、余弦函数、正切函数的图象和性质问题;运用三角公式和正弦定理、余弦定理解 斜三角形重点考查相关的数学思想方法,。

14、三角函三角函数与解三角形数与解三角形 三角函数是一种重要的基本初等函数, 它是描述周期现象的一个重要函数模型, 可以加 深对函数的概念和性质的理解和运用其主要内容包括:三角函数的概念、三角变换、三角 函数、解三角形等四部分 在掌握同角三角函数的基本关系式、 诱导公式、 两角和与两角差、 二倍角的正弦、 余弦、 正切公式的基础上,能进行简单三角函数式的化简、求值和恒等式证明;理解并能正确解决 正弦函数、余弦函数、正切函数的图象和性质问题;运用三角公式和正弦定理、余弦定理解 斜三角形重点考查相关的数学思想方法,。

15、4.3三角函数的图象与性质最新考纲考情考向分析1.能画出ysin x,ycos x,ytan x的图象,了解三角函数的周期性2.理解正弦函数、余弦函数在0,2上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在内的单调性.以考查三角函数的图象和性质为主,题目涉及三角函数的图象及应用、图象的对称性、单调性、周期性、最值、零点考查三角函数性质时,常与三角恒等变换结合,加强数形结合思想、函数与方程思想的应用意识题型既有选择题和填空题,又有解答题,中档难度.1用五点法作正弦函数和余弦函数的简图(1)在正弦函数ysin x,x0,。

16、4.1任意角、弧度制及任意角的三角函数最新考纲考情考向分析1.了解任意角的概念和弧度制的概念2.能进行弧度与角度的互化3.理解任意角三角函数(正弦、余弦、正切)的定义.以理解任意角三角函数的概念、能进行弧度与角度的互化和扇形弧长、面积的计算为主,常与向量、三角恒等变换相结合,考查三角函数定义的应用及三角函数的化简与求值,考查分类讨论思想和数形结合思想的应用意识题型以选择题为主,低档难度.1.角的概念(1)角的分类(按旋转的方向)角(2)象限角象限角象限角的集合表示第一象限角|k360k36090,kZ第二象限角|k36090k360180,kZ第。

17、专题三专题三 三角函数与解三角形三角函数与解三角形 第二编 讲专题 第第1 1讲讲 三角函数的图象与性质三角函数的图象与性质 考情研析 1.以图象为载体,考查三角函数的最值、单调性、对称 性、周期性 2.考查三角函数式的化简、三角函数的图象和性质、角的求 值,重点考查分析、处理问题的能力,是高考的必考点 1 核心知识回顾核心知识回顾 PART ONE 核心知识回顾核心知识回顾 热点考向探究。

18、高考专题突破二高考中的三角函数与解三角形问题题型一三角函数的图象和性质例1 (2016山东)设f(x)2sin(x)sin x(sin xcos x)2.(1)求f(x)的单调递增区间;(2)把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到函数yg(x)的图象,求g的值解(1)由f(x)2sin(x)sin x(sin xcos x)22sin2x(12sin xcos x)(1cos 2x)sin 2x1sin 2xcos 2x12sin1.由2k2x2k(kZ),得kxk(kZ)所以f(x)的单调递增区间是(kZ).(2)由(1)知f(x)2sin1,把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y2sin1的图。

【高考数学三角函数】相关PPT文档
【高考数学三角函数】相关DOC文档
【高考数学三角函数】相关PDF文档
第1讲:三角函数
标签 > 高考数学三角函数[编号:182314]