二项分布

独立重复试验与二项分布编稿:赵雷审稿:李霞【学习目标】1理解n次独立重复试验模型及二项分布2能利用n次独立重复试验及二项分布解决一些简单的实际问题【要点梳理】要点一、n次独立重复试验每次试验只考虑两种可能结果与,并且事件发生的概率相同。在相同的条件下重复地做次试验,各次试验的结果相互独立,称为次独立

二项分布Tag内容描述:

1、4 二项分布二项分布 学习目标 1.理解 n 次独立重复试验的模型.2.掌握二项分布公式.3.能利用独立重复试验的 模型及二项分布解决一些简单的实际问题 知识点 二项分布 在体育课上,某同学做投篮训练,他连续投篮 3 次,每次投篮的命中率都是 0.8,用 X 表示 3 次投篮投中的次数 思考 1 若把每一次投篮看成做了一次试验,则每次试验有几个可能的结果? 答案 有 2 种结果:投中(成功)与未。

2、2.4 二项分布二项分布 学习目标 1.了解n次独立重复试验的模型.2.掌握二项分布公式.3.能利用独立重复试验的模 型及二项分布解决一些简单的实际问题 知识点一 独立重复试验 思考 1 要研究抛掷硬币的规律,需做大量的掷硬币试验,试验的条件有什么要求? 答案 条件相同 思考 2 试验结果有哪些? 答案 正面向上或反面向上 思考 3 各次试验的结果有无影响? 答案 无,即各次试验相互独立 梳理 。

3、独立重复试验与二项分布编稿:赵雷 审稿:李霞【学习目标】1理解n次独立重复试验模型及二项分布2能利用n次独立重复试验及二项分布解决一些简单的实际问题【要点梳理】要点一、n次独立重复试验每次试验只考虑两种可能结果与,并且事件发生的概率相同。在相同的条件下重复地做次试验,各次试验的结果相互独立,称为次独立重复试验。要点诠释:在次独立重复试验中,一定要抓住四点:每次试验在同样的条件下进行;每次试验只有两种结果与,即某事件要么发生,要么不发生; 每次试验中,某事件发生的概率是相同的;各次试验之间相互独立。总之。

4、独立重复试验与二项分布编稿:赵雷 审稿:李霞【学习目标】1理解n次独立重复试验模型及二项分布2能利用n次独立重复试验及二项分布解决一些简单的实际问题【要点梳理】要点一、n次独立重复试验每次试验只考虑两种可能结果与,并且事件发生的概率相同。在相同的条件下重复地做次试验,各次试验的结果相互独立,称为次独立重复试验。要点诠释:在次独立重复试验中,一定要抓住四点:每次试验在同样的条件下进行;每次试验只有两种结果与,即某事件要么发生,要么不发生; 每次试验中,某事件发生的概率是相同的;各次试验之间相互独立。总之。

5、【巩固练习】1某人参加一次考试,4道题中解对3道即为及格,已知他的解题正确率为0.4,则他能及格的概率是()A0.18B0.28C0.37 D0.482.国庆节放假,甲去北京旅游的概率为,乙、丙去北京旅游的概率分别为,.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为()(A) (B) (C) (D) 3.甲、乙两市都位于长江下游,根据天气预报的记录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天的条件下,乙市也为雨天的概率为()(A)0.6 (B)0.7 (C)0.8 (D)0.664已知随机变量X服从正态分布N(0,2),P(X2)0.023,。

6、【巩固练习】1某人参加一次考试,4道题中解对3道即为及格,已知他的解题正确率为0.4,则他能及格的概率是()A0.18B0.28C0.37 D0.482.如图,用K、A1、A2三类不同的元件连接成一个系统.当K正常工作且A1、A2至少有一个正常工作时,系统正常工作,已知K、A1、A2正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为()(A)0.960 (B)0.864 (C)0.720 (D)0.5763.甲、乙两市都位于长江下游,根据天气预报的记录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天的条件下,乙市也为雨天的概率为()(A)0.6 (B)0.7 (C)0.8 (D。

7、高考总复习:二项分布与正态分布编稿:孙永钊 审稿:张林娟【考纲要求】一、二项分布及其应用1、了解条件概率和两个事件相互独立的概念;2、理解n次独立重复试验的模型及二项分布;3、能解决一些简单的实际问题。二、正态分布利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义。【知识网络】随机变量二项分布正态分布离散型随机变量【考点梳理】考点一、条件概率1条件概率的定义设A、B为两个事件,且P(A)0,称P(B|A)=P(AB)/P(A)为在事件A发生的条件下,事件B发生的条件概率。要点诠释:条件概率不一定等于非条件概。

8、高考总复习:二项分布与正态分布编稿:孙永钊 审稿:张林娟【考纲要求】一、二项分布及其应用1、了解条件概率和两个事件相互独立的概念;2、理解n次独立重复试验的模型及二项分布;3、能解决一些简单的实际问题。二、正态分布利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义。【知识网络】随机变量二项分布正态分布离散型随机变量【考点梳理】考点一、条件概率1条件概率的定义设A、B为两个事件,且P(A)0,称P(B|A)=P(AB)/P(A)为在事件A发生的条件下,事件B发生的条件概率。要点诠释:条件概率不一定等于非条件概。

9、第 77 讲 二项分布与正态分布1B(n,p),若 E3D,则 p 等于(B)A. B.13 23C. D.12 14由条件 np3np(1p),得 p .232设随机变量 服从正态分布 N(2,9),若 P(c1)P(4)10.840.16,又随机变量 X 服从正态分布 N(3, 2),所以正态分布的概率密度函数图象关于 x3 对称,P(24) 1 20.160.68.4(2018全国卷)某群体中的每位成员使用移动支付的概率都为 p,各成员的支付方式相互独立设 X 为该群体的 10 位成员中使用移动支付的人数,DX 2.4,P(X4)P(X 6),则 p(B)A0.7 B0.6C0.4 D0.3由题意可知,10 位成员中使用移动支付的人数 X 服从二项分布,即 XB(10,p。

10、课时规范练(授课提示:对应学生用书第 331 页)A 组 基础对点练1设随机变量 服从正态分布 N(, 2),函数 f(x)x 24x 没有零点的概率是 ,则 等于 ( C )12A1 B2C4 D不能确定解析:当函数 f(x)x 24x 没有零点时,1644,根据正态曲线的对称性,当函数 f(x) x24x 没有零点的概率是 时,4.122某地区空气质量监测资料表明,一天的空气质量为优良的概率是 0.75,连续两天为优良的概率是 0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( A )A0.8 B0.75C0.6 D0.453已知某批零件的长度误差(单位:毫米)服从正态分布 N(0,32),从。

11、考点规范练 49 二项分布与正态分布一、基础巩固1.某居民小区有两个相互独立的安全防范系统 A 和 B,系统 A 和系统 B 在任意时刻发生故障的概率分别为 和 p.若在任意时刻恰有一个系统不发生故障的概率为 ,则 p= ( )18 940A. B. C. D.110 215 16 152.已知随机变量 X 服从正态分布 N(2,32),且 P(X1) =0.30,则 P(20),若 在(80,120) 内的概率为 0.7,则他的速度超过 120 的概率为 ( )A.0.05 B.0.1 C.0.15 D.0.27.甲射击命中目标的概率是 ,乙射击命中目标的概率是 ,丙射击命中目标的概率是 .现在三人同时射12 13 14击目标,则目标被击中的概率为( )。

12、22.3 独立重复试验与二项分布1.理解 n 次独立重复试验的模型 2.理解二项分布3能利用独立重复试验的模型及二项分布解决一些简单的实际问题1n 次独立重复试验一般地,在相同条件下重复做的 n 次试验称为 n 次独立重复试验2二项分布前提 在 n 次独立重复试验中X 事件 A 发生的次数字母的含义 p 每次试验中事件 A 发生的概率分布列 P(Xk)C pk(1p) nk ,k0,1,2,nkn结论 随机变量 X 服从二项分布记法 记作 XB(n,p),并称 p 为成功概率明确该公式中各量表示的意义:n 为重复试验的次数;p 为在一次试验中某事件 A 发生的概率;k 是在 n 次独。

13、(四川省绵阳市 2019 届高三第二次(1 月)诊断性考试数学理试题)14.一个盒子装有 3个红球和 2个蓝球(小球除颜色外其它均相同) ,从盒子中一次性随机取出 3个小球后,再将小球放回重复 50次这样的实验记“取出的 3个小球中有 2个红球,1 个蓝球”发生的次数为 ,则 的方差是_【答案】12【解析】【分析】直接由二项分布的方差公式计算即可.【详解】由题意知 ,其中 n=50,p= = , D( )=50 =12,故答案为 12.【点睛】本题考查了二项分布的概念及方差的计算,属于基础题.(湖南省长沙市 2019 届上学期高三统一检测理科数学试题)5.已知一。

【二项分布】相关PPT文档
【二项分布】相关DOC文档
标签 > 二项分布[编号:2140]