第2章 指数函数对数函数和幂函数 章末检测试卷含答案

章末检测试卷章末检测试卷(四四) (时间:120 分钟 满分:150 分) 一、单项选择题(本大题共 8 小题,每小题 5 分,共 40 分) 1化简 x3 x 的结果为( ) A x B. x C x D. x 答案 A 解析 要使式子有意义,只需x30,x0,即 x0,得 x1 或 x 0. 3

第2章 指数函数对数函数和幂函数 章末检测试卷含答案Tag内容描述:

1、章末检测试卷章末检测试卷(四四) (时间:120 分钟 满分:150 分) 一、单项选择题(本大题共 8 小题,每小题 5 分,共 40 分) 1化简 x3 x 的结果为( ) A x B. x C x D. x 答案 A 解析 要使式子有意义,只需x30,x0,即 x0,得 x1 或 x0. 3已知 log2m2.019,log2n1.019,则n m等于( ) A2 B.1 2 C10。

2、第四章第四章 指数函数与对数函数指数函数与对数函数 时间:120 分钟 满分:150 分 一单项选择题本大题共 8 小题,每小题 5 分,共 40 分 1函数 fx2ax 11a0,且 a1恒过定点 A1,1 B1,1 C0,1 D0,1 。

3、章末检测(三)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)1若a2.又由幂函数yx的单调性知1.52,1.5223.1,故选C.答案C3函数y2log2(x23)(x1)的值域为()A(2,) B(,2)C4,) D3,)解析x1,x234,log2(x23)2,则有y4.答案C4已知幂函数yf(x)满足f 9,则f(x)的图像所分布的象限是()A第一、。

4、第第 6 章章 幂函数指数函数和对数函数幂函数指数函数和对数函数 时间:120 分钟 满分:150 分 一单项选择题本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中只有一项 符合题目要求 1.下列函数中,在区间0,。

5、第第 6 6 章章 幂函数指数函数和对数函数幂函数指数函数和对数函数 时间:120 分钟 满分:150 分 一单项选择题本大题共 8 小题,每小题 5 分,共 40 分 1已知幂函数 fx的图象经过点 2,1 2 ,则 f4的值等于 A.1。

6、章末检测(三)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)1若a2又由幂函数yx的单调性知,1.52,1.5223.1,故选C答案C3函数y2log2(x23)(x1)的值域为()A(2,) B(,2)C4,) D3,)解析x1,x234,log2(x23)2,则有y4答案C4已知幂函数f(x)满足f9,则f(x)的图像所分布的象限是()A第一、二象限 B第一、。

7、章末检测试卷(三)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1化简的结果是()A29 B92 C1 D1答案C解析(4)(5)1.2给定函数y;y(x1);y|x1|;y2x1,其中在区间(0,1)上单调递减的函数序号是()A B C D答案B解析y在定义域上是增函数,y(x1)在定义域上是减函数,y|x1|所以在区间(,1)上单调递减,y2x1在定义域上是增函数,故在区间(0,1)上单调递减的函数是y(x1),y|x1|,故选B.3已知集合Ax|ylg(2x)lg x,By|y2x,x0,R是实数集,则(RB)A等于()A0,1 B(0,1C(,0 D以上都不对答案B解析由得0x2,故Ax|0x2,由x0,得2x1。

8、章末检测试卷(三)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1(2018广东中山纪念中学期末)若a2或xN BM NCMN DMN答案A解析MN2a(a2)(a1)(a3)(2。

9、章末检测试卷(三)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1已知f(3x)4xlog2x,那么f的值是_答案2解析令3x,得x.故f4log22.2已知在x克a%的盐水中,加入y克b%(ab)的盐水,浓度变为c%,将y表示成x的函数关系式为_答案yx解析根据配制前后溶质不变,有等式a%xb%yc%(xy),即axbycxcy,故yx.3函数f(x)log5(2x1)的单调增区间是_答案解析函数f(x)的定义域为,令t2x1(t0)因为ylog5t在t(0,)上为单调增函数,t2x1在上为单调增函数,所以函数ylog5(2x1)的单调增区间为.4若f(x)则f(x)的值域为_答案(2,1解析当x(,1时。

10、章末复习课网络构建核心归纳1指数和对数(1)分数指数的定义:a(a0,m,nN,m2),a(a0,m,nN,m2)(2)如同减法是加法的逆运算,除法是乘法的逆运算一样,对数运算是指数运算的逆运算abNlogaNb(a0,a1,N0)由此可得到对数恒等式:alogaNN,blogaab.(3)对数换底公式logaN(a0,b0,a1,b1,N0)的意义在于把各个不同底数的对数换成相同底数的对数,这样,一可以进行换算,二可以通过对数表求值(4)指数和对数的运算法则有:amanamn,logaMlogaNloga(MN),(am)namn,logaMnnlogaM,amanamn,logaMlogaNloga.(aR,m,nR)(M,NR,a0,a1)2指数函数、。

【第2章 指数函数对数函数和】相关DOC文档
标签 > 第2章 指数函数对数函数和幂函数 章末检测试卷含答案[编号:114261]