等比数列的前n项和

A 级 基础巩固一、选择题1设a n是公比为正数的等比数列,若 a11,a 516,则数列 an前 7 项的和为( )A63 B64 C127 D128解析:设数列a n的公比为 q(q0) ,则有 a5a 1q416,所以 q2,数列的前 7 项和为 S7 127.a1(1 q7)1 q 1 27

等比数列的前n项和Tag内容描述:

1、A 级 基础巩固一、选择题1设a n是公比为正数的等比数列,若 a11,a 516,则数列 an前 7 项的和为( )A63 B64 C127 D128解析:设数列a n的公比为 q(q0) ,则有 a5a 1q416,所以 q2,数列的前 7 项和为 S7 127.a1(1 q7)1 q 1 271 2答案:C2设在等比数列a n中,公比 q2,前 n 项和为 Sn,则 的值为( )S4a3A. B. C. D.154 152 74 72解析:根据等比数列的公式,得 .S4a3 a1(1 q4)(1 q)a1q2 (1 q4)(1 q)q2 1 24(1 2)22 154答案:A3一座七层的塔,每层所点的灯的盏数都等于上面一层的 2 倍,一共点 381 盏灯,则底层所点灯的盏数是( )。

2、2.5 等比数列的前 n 项和(二)课时目标1熟练应用等比数列前 n 项和公式的有关性质解题2能用等比数列的前 n 项和公式解决实际问题1等比数列a n的前 n 项和为 Sn,当公比 q1 时,S n ;当a11 qn1 q a1 anq1 qq1 时,S nna 1.2等比数列前 n 项和的性质:(1)连续 m 项的和 (如 Sm、S 2mS m、S 3mS 2m),仍构成等比数列(注意:q1 或 m为奇数)(2)Smn S mq mSn(q 为数列 an的公比)(3)若a n是项数为偶数、公比为 q 的等比数列,则 q.S偶S奇3解决等比数列的前 n 项和的实际应用问题,关键是在实际问题中建立等比数列模型一、选择题1在各项都为正数的。

3、2.5 等比数列的前 n 项和(一)课时目标1掌握等比数列前 n 项和公式的推导方法2会用等比数列前 n 项和公式解决一些简单问题1等比数列前 n 项和公式:(1)公式:S nError!.(2)注意:应用该公式时,一定不要忽略 q1 的情况2若a n是等比数列,且公比 q1,则前 n 项和 Sn (1q n)A( qn1)其中a11 qA .a1q 13推导等比数列前 n 项和的方法叫错位相减法一般适用于求一个等差数列与一个等比数列对应项积的前 n 项和一、选择题1设 Sn为等比数列a n的前 n 项和,8a 2a 50,则 等于 ( )S5S2A11 B5C8 D11答案 D解析 由 8a2a 50 得 8a1qa 1q40,q2,则 11.S5。

4、2.3.3 等比数列的前n项和(一),第2章 2. 3 等比数列,1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一 等比数列前n项和公式及其推导 1.等比数列前n项和公式,答案,na1,(2)注意:应用该公式时,一定不要忽略q1的情况.,2.等比数列前n项和公式的推导 推导1 求等差数列前n项和用的是倒序相加法,对于等比数列an,若q1,Sna1a1qa1q2a1qn1a1q(a1a1qa1qn1a1qn1)a1q(Sna1qn1),至此,。

5、2.3.3 等比数列的前n项和(二),第2章 2. 3 等比数列,1.熟练应用等比数列前n项和公式的有关性质解题. 2.应用方程的思想方法解决与等比数列前n项和有关的问题.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一 等比数列的前n项和的变式,答案,na1,当公比q1时,因为a10,所以Snna1是n的正比例函数(常数项为0的一次函数).,答案,AqnA,思考 在数列an中,an1can(c为非零常数)且前n项和Sn3n1k,则实数k_.,答案, 1 3,解析 由题意知an是等比数列, 3n的系数与常数项互为相反数, 而3n的系数为 1。

6、2.5 等比数列的前n项和1等比数列的前n项和公式若等比数列的首项为,公比为,则等比数列的前项和的公式为2等比数列前n项和公式的函数特性(1)当公比时,因为,所以是关于n的正比例函数,则数列的图象是正比例函数图象上的一群孤立的点(2)当公比时,等比数列的前项和公式是,即,设,则上式可写成的形式,则数列的图象是函数图象上的一群孤立的点由此可见,非常数列的等比数列的前n项和是一个关于n的指数型函数与一个常数的和,且指数型函数的系数与常数项互为相反数3等比数列前n项和的性质设等比数列的前n项和为,公比为q,则利用等比数。

7、63 等比数列及其前等比数列及其前n项和项和 教材梳理 1等比数列的定义 一般地,如果一个数列从第 2 项起,每一项与它的前一项的等于同一,那么这个 数列叫做等比数列,这个常数叫做等比数列的,通常用字母 q 表示q0 2等比中项 如果在 a。

8、2.5 等比数列的前n项和(一),第二章 数列,1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等比数列的前n项和公式的推导,对于S641248262263,用2乘以等式的两边可得2S64248262263264,对这两个式子作怎样的运算能解出S64?,答案,设等比数列an的首项是a1,公比是q,前n项和Sn可用下面的“错位相减法”求得 Sna1a1qa1q2a1qn1. 则qSna1qa1q2a1qn1a1qn. 由得(1q)Sna1a1qn.,梳理,当q1时,由于a1a2an,所以Snna1.,。

9、4.3.2 第2课时 等比数列前n项和公式的应用 学 习 目 标 核 心 素 养 1.掌握等比数列前 n 项和的性质的应用重点 2.掌握等差数列与等比数列的综合应用重点 3.能用分组转化法求数列的和重点易错点 1.通过等比数列前 n 项和公。

10、2.5 等比数列的前n项和,第二章,第2课时 数列求和,推导等比数列前n项和公式的方法称为_法 答案 错位相减,1.分组转化求和法 如果一个数列的每一项是由几个独立的项组合而成,并且各独立项也可组成等差或等比数列,则该数列的前n项和可考虑拆项后利用公式求解,3错位相减法 若数列an为等差数列,数列bn是等比数列,由这两个数列的对应项乘积组成的新数列为anbn,当求该数列的前n项的和时,常常采用将anbn的各项乘以公比q,然后错位一项与anbn的同次项对应相减,即可转化为特殊数列的求和,所以这种数列求和的方法称为错位相减法,分组转化求和,。

11、4.3.2 第1课时 等比数列前n项和公式 学 习 目 标 核 心 素 养 1.掌握等比数列的前 n 项和公式及其应用.重点 2.会用错位相减法求数列的和.重点 3.能运用等比数列的前 n 项和公式解决一些简单的实际问题. 1.通过等比数列。

12、第4课时等比数列前n项和的性质及应用一、选择题1等比数列an中,a33S22,a43S32,则公比q等于()A2 B. C4 D.答案C解析a33S22,a43S32,a4a33(S3S2)3a3,即a44a3,q4.2设an是公比为q的等比数列,Sn是它的前n项和,若Sn是等差数列,则q等于()A1 B0 C1或0 D1答案A解析SnSn1an(n2且nN*),又Sn是等差数列,an为定值,即数列an为常数列,q1(n2且nN*)3设等比数列an的前n项和为Sn,已知S38,S67,则a7a8a9等于()A. B C. D.答案A解析因为a7a8a9S9S6,且S3,S6S3,S9S6也成等比数列,即8,1,S9S6成等比数列,所以8(S9S6)1,即S9S6,所以a7a8a9.4正项。

13、第3课时等比数列前n项和公式一、选择题1等比数列an中,a12,a21,则S100等于()A42100 B42100 C4298 D42100答案C解析q.S1004(12100)4298.2在等比数列an中,已知a13,an48,Sn93,则n的值为()A4 B5 C6 D7答案B解析显然q1,由Sn,得93,解得q2.由ana1qn1,得4832n1,解得n5.3设Sn为等比数列an的前n项和,8a2a50,则等于()A11 B5 C8 D11答案D解析由8a2a50得8a1qa1q40,a10,q0,q2,则11.4已知数列an是等差数列,若a22,a44,a66构成等比数列,则数列an的公差d等于()A1 B1C2 D2答案B解析因为a22,a44,a6。

14、第4课时等比数列前n项和的性质及应用学习目标1.理解等比数列前n项和公式的函数特征.2.熟练应用等比数列前n项和公式的有关性质解题知识点一等比数列前n项和公式的函数特征当公比q1时,设A,等比数列的前n项和公式是SnA(qn1)即Sn是n的指数型函数当公比q1时,因为a10,所以Snna1,Sn是n的正比例函数知识点二等比数列前n项和的性质1数列an为公比不为1的等比数列(或公比为1,且n不是偶数),Sn为其前n项和,则Sn,S2nSn,S3nS2n仍构成等比数列2若an是公比为q的等比数列,则SnmSnqnSm(n,mN*)3若an是公比为q的等比数列,S偶,S奇分别是数列的偶数。

15、第3课时等比数列前n项和公式学习目标1.掌握等比数列的前n项和公式及公式证明思路.2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题知识点一等比数列的前n项和公式已知量首项、公比与项数首项、公比与末项求和公式SnSn知识点二错位相减法1推导等比数列前n项和的方法叫错位相减法2该方法一般适用于求一个等差数列与一个等比数列对应项积的前n项和,即若bn是公差d0的等差数列,cn是公比q1的等比数列,求数列bncn的前n项和Sn时,也可以用这种方法思考如果Sna1a2qa3q2anqn1,其中an是公差为d的等差数列,q1.两边同乘以q,再两式相减。

16、3.2等比数列的前n项和基础过关1.等比数列an的前n项和为Sn.已知S3a210a1,a59,则a1()A. B. C. D.解析由题知q1,则S3a1q10a1,得q29,又a5a1q49,则a1.答案C2.设Sn为等比数列an的前n项和,已知3S3a42,3S2a32,则公比q()A.3 B.4 C.5 D.6解析3S33S23a3a4a3a44a3q4.答案B3.设等比数列an的前n项和为Sn,若3,则()A.2 B. C. D.3解析由题意知1q33,q32.答案B4.等比数列an的各项均为实数,其前n项和为Sn,已知S3,S6,则a8_.解析设数列an首项为a1,公比为q(q1),则解得所以a8a1q72732.答案325.数列an是等比数列,其前n项和为Sn,已知S42,S。

17、第2课时等比数列前n项和性质及应用一、选择题1等比数列an中,a33S22,a43S32,则公比q等于()A2 B. C4 D.答案C解析a33S22,a43S32,a4a33(S3S2)3a3,即a44a3,q4,故选C.2设等比数列an的前n项和为Sn,若3,则等于()A2 B. C. D3答案B解析由题意知1q33,q32.3设an是公比为q的等比数列,Sn是它的前n项和,若Sn是等差数列,则q等于()A1 B0 C1或0 D1答案A解析SnSn1an(nN,n2),又Sn是等差数列,an为定值,即数列an为常数列,q1.4记等比数列an的前n项和为Sn,若S32,S618,则等于()A3 B5 C31 D33答案D解析由题意知公比q1,1q39,所以q2,。

18、32等比数列的前n项和第1课时等比数列前n项和公式一、选择题1等比数列an中,a12,a21,则S100等于()A42100 B42100C4298 D42100答案C解析q.S1004(12100)4298.2等比数列an中,an2n,则它的前n项和Sn等于()A2n1 B2n2C2n11 D2n12答案D解析an2n,a12,q2,Sn2n12.3在等比数列an中,已知a13,an48,Sn93,则n的值为()A4 B5 C6 D7答案B解析显然q1,由Sn,得93,解得q2.由ana1qn1,得4832n1,解得n5.4设数列(1)n的前n项和为Sn,则Sn等于()A. B.C. D.答案D解析Sn.5等比数列an的前n项和为Sn,已知S5。

19、第2课时等比数列前n项和性质及应用学习目标1.了解等比数列前n项和公式的函数特征.2.熟练应用等比数列前n项和公式的有关性质解题.3.会用错位相减法求和知识点一等比数列前n项和公式的函数特征在等比数列前n项和公式中,当公比q1时,设A,等比数列的前n项和公式是SnA(qn1)即Sn是n的指数型函数当公比q1时,因为a10,所以Snna1,Sn是n的正比例函数知识点二等比数列前n项和的性质等比数列an前n项和的三个常用性质1数列an为公比不为1的等比数列,Sn为其前n项和,则Sn,S2nSn,S3nS2n仍构成等比数列2若an是公比为q的等比数列,则SnmSnqnSm(n,mN)。

20、32等比数列的前n项和第1课时等比数列前n项和公式学习目标1.掌握等比数列的前n项和公式及公式证明思路.2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题知识点一等比数列的前n项和公式已知量首项a1,项数n与公比q首项a1,末项an与公比q公式SnSn特别提醒:在应用公式求和时,应注意到Sn的使用条件为q1,而当q1时应按常数列求和,即Snna1.知识点二错位相减法在等比数列前n项和公式的推导中,我们使用的方法称为错位相减法主要解决的题型是:若bn是公差为d(d0)的等差数列,cn是公比为q(q1)的等比数列,求数列bncn的前n项和Sn.一般。

【等比数列的前n项和】相关PPT文档
【等比数列的前n项和】相关DOC文档
标签 > 等比数列的前n项和[编号:170394]