2021 年高考理科数学一轮复习:题型全归纳与高效训练突破年高考理科数学一轮复习:题型全归纳与高效训练突破 专题专题 3.6 高考解答题热点题型高考解答题热点题型(三三)利用导数探究函数的零点问题利用导数探究函数的零点问题 目录 一、题型全归纳一、题型全归纳 题型一题型一 判断、证明或讨论函数零点的
备战2021高考 专题13 函数与导数综合教师版含解析Tag内容描述:
1、2021 年高考理科数学一轮复习:题型全归纳与高效训练突破年高考理科数学一轮复习:题型全归纳与高效训练突破 专题专题 3.6 高考解答题热点题型高考解答题热点题型(三三)利用导数探究函数的零点问题利用导数探究函数的零点问题 目录 一、题型全归纳一、题型全归纳 题型一题型一 判断、证明或讨论函数零点的个数判断、证明或讨论函数零点的个数 【题型要点】【题型要点】判断函数零点个数的 3 种方法。
2、2021 年高考理科数学一轮复习:题型全归纳与高效训练突破年高考理科数学一轮复习:题型全归纳与高效训练突破 专题专题 3.7 导数的综合应用导数的综合应用(选填题选填题) 目录 一、题型全归纳一、题型全归纳 题型一题型一 利用导数求解函数的零点或方程的根的问题利用导数求解函数的零点或方程的根的问题 【题型要点】利用导数研究函数零点或方程根的方法【题型要点】利用导数研究函数零点或方程。
3、2021 年高考理科数学一轮复习:题型全归纳与高效训练突破年高考理科数学一轮复习:题型全归纳与高效训练突破 专题专题 3.3 导数与函数的极值、最值导数与函数的极值、最值 目录 一、题型全归纳一、题型全归纳 题型一题型一 利用导数解决函数的极值问题利用导数解决函数的极值问题 【题型要点】【题型要点】利用导数研究函数极值问题的一般流程 命题角度一命题角度一 由图象判断函数的极值由图。
4、2021 年高考理科数学一轮复习:题型全归纳与高效训练突破年高考理科数学一轮复习:题型全归纳与高效训练突破 专题专题 3.2 导数与函数的单调性导数与函数的单调性 目录 一、题型全归纳一、题型全归纳 题型一题型一 不含参数函数的单调性不含参数函数的单调性 【题型要点】【题型要点】求函数单调区间的步骤 (1)确定函数 f(x)的定义域 (2)求 f(x) (3)在定义域内解不等式 f(。
5、专题 04 函数与导数 1(2020 年高考全国卷理数 6)函数 43 2f xxx 的图像在点 1,1f处的切线方程为 ( ) A 21yx B21yx C23yx D21yx 【答案】B 【解析】 43 2f xxx, 32 46fxxx, 11f, 12 f ,因此,所求切线的方程为 121yx ,即 21yx ,故选 B 2(2019 浙江高考)已知 ,a bR,函数 32 。
6、专题 04 函数与导数 1(2019 年高考全国卷理数)已知曲线eln x yaxx在点(1,ae)处的切线方程为 y=2x+b,则 Ae1ab, Ba=e,b=1 C 1 e1ab , D 1 ea ,1b 【答案】D 【解析】eln1, x yax 切线的斜率 1 |e 12 x kya , 1 ea ,将(1,1)代入 2yxb ,得 21,1bb 故选 D 【名师点睛】本题求解的关。
7、函数与导数单元测 【满分:150 分 时间:120 分钟】 一、单项选择题(10*5=50 分) 1下列函数中,既是奇函数又存在极值的是( ) Ayx3 Byln(x) Cyxe x Dyx2 x 【答案】D 【解析】A、B 为单调函数,不存在极值,C 不是奇函数,故选 D 2(2021 齐齐哈尔市第八中学校高三一模)曲线 ysinx 在点(0,0)处的切线方程为( ) Ay2x B。
8、专题专题 15 三角函数与解三角形综合三角函数与解三角形综合 1(2020 届山西省太原市高三模拟)已知ABC中,, , a b c分别是内角, ,A B C的对边, 21 2cossincos 362 CC ()求C ; ()若3c ,ABC的面积为 3 3 2 ,求 11 ab 的值 【答案】() 3 C ;() 3 2 【解析】 ()因为 21 2cossincos 362 CC 。
9、专题专题 13 坐标系与参数方程坐标系与参数方程 1(2020 云南昆明一中高三(文)在直角坐标系xOy中,直线l的参数方程为 3 2 xt yt (t为参数),以原点 O为极点,x轴的非负半轴为极轴建立极坐标系,点P的极坐标为 5 3 2, 4 ,曲线C的极坐标方程为 2 4 sin0. (1)写出直线l的普通方程和曲线C的直角坐标方程; (2)若点Q为曲线C上的动点,求PQ中点M到直。
10、专题专题 16 概率与统计综合概率与统计综合 1(2020 届湖南省怀化市高三第一次模拟)为了解某地中小学生的近视形成原因,教育部门委托医疗机构对 该地所有中小学生的视力做了一次普查现该地中小学生人数和普查得到的近视情况分别如图 1 和图 2 所 示 (1)求该地中小学生的平均近视率(保留两位有效数字); (2)为调查中学生用眼卫生习惯,该地用分层抽样的方法从所有初中生和高中生中确定 5 人进。
11、专题专题 13 函数与导数综合函数与导数综合 1(2020 届湖南省怀化市高三第一次模拟)已知函数 2 ( ) x f xeax,其中常数aR (1)当 (0,)x时,不等式( )0f x 恒成立,求实数a的取值范围; (2)若1a ,且 0,)x时,求证: 2 ( )414f xxx 【答案】(1) 2 4 e a ;(2)证明见解析 【解析】 (1)( )0f x 在0 x恒成立 2 x e 。