7.1.2 向量的加法

2.1 向量的加法,第二章 2 从位移的合成到向量的加法,学习目标 1.理解并掌握向量加法的概念,了解向量加法的物理意义及其几何意义. 2.掌握向量加法的三角形法则和平行四边形法则,并能熟练地运用这两个法则作两个向量的加法运算. 3.了解向量加法的交换律和结合律,并能依据几何意义作图解释向量加法运算

7.1.2 向量的加法Tag内容描述:

1、2.1 向量的加法,第二章 2 从位移的合成到向量的加法,学习目标 1.理解并掌握向量加法的概念,了解向量加法的物理意义及其几何意义. 2.掌握向量加法的三角形法则和平行四边形法则,并能熟练地运用这两个法则作两个向量的加法运算. 3.了解向量加法的交换律和结合律,并能依据几何意义作图解释向量加法运算律的合理性.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 向量加法的定义及其运算法则,分析下列实例:,(1)飞机从广州飞往上海,再从上海飞往北京(如图), 这两次位移的结果与飞机从广州直接飞往北京的位移是相同的.,(2)有两。

2、6.26.2 平面向量的运算平面向量的运算 6 6. .2.12.1 向量的加法运算向量的加法运算 1.如图,在正六边形 ABCDEF 中,BACDEF等于 A0 B.BE C.AD D.CF 答案 D 解析 BACDEFDECDEFCEE。

3、6 6. .2 2 平面向量的运算平面向量的运算 6 6. .2.12.1 向量的加法运算向量的加法运算 基础达标 一选择题 1.下列等式错误的是 A.a00aa B.ABBCAC0 C.ABBA0 D.CAACMNNPPM 解析 ABBC。

4、42向量的加法(一)基础过关1设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A.B2C3D4答案D解析因为点M为平行四边形ABCD对角线的交点,所以点M是AC和BD的中点,由平行四边形法则知2,2,故4.2.如图在ABCD中,O是对角线的交点,下列结论正确的是()A.,B.C.D.答案C3在四边形ABCD中,则()A四边形ABCD一定是矩形B四边形ABCD一定是菱形C四边形ABCD一定是正方形D四边形ABCD一定是平行四边形答案D4ABC的三边长为3,4,5,则等于()A0B12C2D9答案A5若|4,|3,|5,则ABC_.答案906已知|1,且AOB60,则|_.答案解析如图所。

5、2.1.2向量的加法一、选择题1.作用在同一物体上的两个力F160 N,F260 N,当它们的夹角为120时,则这两个力的合力大小为()A.30 N B.60 N C.90 N D.120 N答案B2.如图,在平行四边形ABCD中,O是对角线的交点,下列结论正确的是()A., B.C. D.答案C3.下列说法正确的个数为()如果非零向量a与b的方向相同或相反,那么ab的方向必与a或b的方向相同;在ABC中,必有0;若0,则A,B,C一定为一个三角形的三个顶点;若a,b均为非零向量,则|ab|a|b|.A.0 B.1 C.2 D.3答案B解析错,若ab0,则ab的方向是任意的;正确;错,当A,B,C三点共线时,也满足0;。

6、2.2向量的线性运算22.1向量的加法一、选择题1化简等于()A. B. C. D.考点向量加法运算及运算律题点化简向量答案D2.如图,四边形ABCD是梯形,ADBC,对角线AC与BD相交于点O,则等于()A. B. C. D.考点向量加法运算及运算律题点几何图形中的向量加法运算答案B解析.3下列说法正确的个数为()如果非零向量a与b的方向相同或相反,那么ab的方向必与a或b的方向相同;在ABC中,必有0;若0,则A,B,C一定为一个三角形的三个顶点;若a,b均为非零向量,则|ab|a|b|.A0 B1 C2 D3考点向量加法运算及运算律题点几何图形中的向量加法运算答案B解析错,若ab0。

7、2从位移的合成到向量的加法2.1向量的加法一、选择题1化简等于()A. B. C. D.考点向量加法运算及运算律题点化简向量答案D2如图,在平行四边形ABCD中,O是对角线的交点,下列结论正确的是()A., B.C. D.答案C3作用在同一物体上的两个力F160 N,F260 N,当它们的夹角为120时,则这两个力的合力大小为()A30 N B60 N C90 N D120 N答案B4下列说法正确的个数为()如果非零向量a与b的方向相同或相反,那么ab的方向必与a或b的方向相同;在ABC中,必有0;若0,则A,B,C一定为一个三角形的三个顶点;若a,b均为非零向量,则|ab|a|b|.A0 B1 C2 D3考点向。

8、6.2.1 向量的加法运算向量的加法运算 一选择题 1.已知 a,b,c 是非零向量,则acb,bac,bca,cab,cba中,与向量abc 相等的个数为 A.5 B.4 C.3 D.2 2.若向量 a 表示向东航行 1 km,向量 b 。

9、2.1.2向量的加法基础过关1下列三个命题:若ab0,bc0,则ac;的等价条件是点A与点C重合,点B与点D重合;若ab0且b0,则a0.其中正确命题的个数是()A1 B2 C3 D0答案B解析中,ab0,a、b的长度相等且方向相反又bc0,b、c的长度相等且方向相反,a、c的长度相等且方向相同,故ac,正确中,当时,应有|及由A到B与由C到D的方向相同,但不一定要有点A与点C重合,点B与点D重合,故错显然正确2如图,在ABCD中,O是对角线的交点,下列结论正确的是()A.,B.C.D.答案C3a,b为非零向量,且|ab|a|b|,则()Aab,且a与b方向相同Ba,b是共线向量且方向相反CabDa。

10、2从位移的合成到向量的加法21向量的加法基础过关1已知向量ab,且|a|b|0,则向量ab的方向()A与向量a方向相同B与向量a方向相反C与向量b方向相同D不确定解析如果a和b方向相同,则它们的和的方向应该与a(或b)的方向相同;如果它们的方向相反,而a的模大于b的模,则它们的和的方向与a的方向相同答案A2下列等式错误的是()Aa00aaB.0C.0D.解析20,故B错答案B3若a,b为非零向量,且|ab|a|b|,则()Aab,且a与b方向相同Ba,b是共线向量且方向相反CabDa,b无论什么关系均可答案A4已知a,b,c,d.根据图示填空,(1)abc_;(2)bdc_.解析(1)abc.(2)bdc.答。

11、2.2向量的线性运算2.2.1向量的加法基础过关1.已知下列各式:;();.其中结果为0的有()A.1个 B.2个 C.3个 D.4个解析0;()()()0;0;()()0.故结果为0的是.答案B2.如图所示,在平行四边形ABCD中,有以下四个等式:;0.其中正确的式子有()A.4个 B.3个 C.2个 D.1个解析由平行四边形法则知正确;错误,;错误,;正确,则0.答案C3.已知向量a表示“向东航行1 km”,向量b表示“向南航行1 km”,则向量ab表示_ km.解析由平行四边形法则可得ab表示向东南航行 km.答案向东南航行4.如图所示,在正六边形ABCDEF中,若AB1,则|_.解析|。

12、42向量的加法(一)学习目标1.理解并掌握加法的概念,了解向量加法的物理意义及其几何意义.2.掌握向量加法的三角形法则和平行四边形法则,并能熟练地运用这两个法则作两个向量的加法运算.3.了解向量加法的交换律和结合律,并能依几何意义作图解释加法运算律的合理性知识链接1两个向量相加就是两个向量的模相加吗?答不是两个向量的和仍是一个向量,所以两个向量相加要注意两个方面,即和向量的方向和模2向量加法的平行四边形法则和三角形法则有何区别与联系?答向量加法的平行四边形法则和三角形法则的区别:三角形法则中强调“首尾相连”,。

13、6.2.1 向量的加法运算 学 习 目 标 核 心 素 养 1.理解并掌握向量加法的概念,了解向量加法的几何意义及运算律难点 2.掌握向量加法运算法则,能熟练地进行向量加法运算重点 3.能区分数的加法与向量的加法的联系与区别易混点 1.教材。

14、2从位移的合成到向量的加法2.1向量的加法学习目标1.理解并掌握向量加法的概念,了解向量加法的物理意义及其几何意义.2.掌握向量加法的三角形法则和平行四边形法则,并能熟练地运用这两个法则作两个向量的加法运算.3.了解向量加法的交换律和结合律,并能依据几何意义作图解释向量加法运算律的合理性知识点一向量加法的定义及其运算法则1向量加法的定义求两个向量和的运算,叫作向量的加法2向量加法的法则三角形法则已知向量a,b,在平面上任取一点A,作a,b,再作向量,则向量叫作向量a与b的和,记作ab,即ab平行四边形法则已知向量a,b,。

15、2.2向量的线性运算22.1向量的加法学习目标1.理解并掌握向量加法的概念,了解向量加法的物理意义及其几何意义.2.掌握向量加法的三角形法则和平行四边形法则,并能熟练地运用这两个法则作两个向量的加法运算.3.了解向量加法的交换律和结合律,并能依据几何意义作图解释向量加法运算律的合理性知识点一向量加法的定义及其运算法则1向量加法的定义求两个向量和的运算,叫做向量的加法2向量求和的法则向量求和的法则三角形法则已知向量a,b,在平面上任取一点O,作a,b,则向量叫做a与b的和,记作ab,即ab.这种求向量和的方法,称为向量加法的。

【7.1.2 向量的加法】相关PPT文档
6.2.1向量的加法运算ppt课件
【7.1.2 向量的加法】相关DOC文档
6.2.1向量的加法运算 课后作业(含答案)
2.1 向量的加法 课时对点练含答案
6.2.1向量的加法运算 同步练习(含答案)
《2.1.2 向量的加法》同步练习(含答案)
2.1 向量的加法 课时作业含答案
《2.2.1 向量的加法》同步练习(含答案)
4.2 向量的加法(一) 学案(含答案)
2.1 向量的加法 学案(含答案)
2.2.1 向量的加法 学案(含答案)
标签 > 7.1.2 向量的加法[编号:175943]