第 2 课时 余角和补角1.若1 与2 互为余角,且1=53,则2=( )A.47 B.37 C.27 D.172.下列四个角中,最有可能与 70角互补的是( )3.已知 的补角是 130,则=_.4.如图中有哪些角互为补角?5.已知1 与2 互补,3 与4 互补,若1=3,则2 与4 的关系是(
6.4.3第2课时正弦定理 同步练习含答案Tag内容描述:
1、第 2 课时 余角和补角1.若1 与2 互为余角,且1=53,则2=( )A.47 B.37 C.27 D.172.下列四个角中,最有可能与 70角互补的是( )3.已知 的补角是 130,则=_.4.如图中有哪些角互为补角?5.已知1 与2 互补,3 与4 互补,若1=3,则2 与4 的关系是( )A.24 B.24C.2=4 D.无法判断6.若=,且+1=90,+2=90,则1 与2 的关系为_.7.1,2 都是3 的补角,根据_得1=2.8.如图,AOD=90,COE=90,那么AOC 与DOE 的大小有什么关系?为什么?9.。
2、第 2 课时 去括号1.解方程 1-(x+3)=2,去括号正确的是( )A.1+x-3=2 B.1-x-3=2 C.1-x+3=2 D.x+1-3=22.解方程 3-(x+6)=-5(x-1)时,去括号的结果是( )A.3-x+6=-5x+5 B.3-x-6=-5x+5 C.3-x+6=-5x-5 D.3-x-6=-5x+13.解方程-2(x-1)-4(x-2)=1 时,去括号,得_.4.解方程 4(x-1)-x=2(x+ ,步骤如下:去括号:得 4x-1-x=2x+1;移项,得 4x-2x-x=1+1;合并21同类项,得 x=2.其中开始出错的一步是( )A. B. C. D.各步骤都正确5.方程 2(x-2)-3(4x-1)=9 的解是( )A.x=0.8 B.x=-1 C.x=-1.6 D.x=16.若 2(x-3)与 1-3x 的值相等,则 x 的值为( )A. B. C.5 D.57。
3、第第 2 2 课时课时 夹角问题夹角问题 1已知 A(0,1,1),B(2,1,0),C(3,5,7),D(1,2,4),则直线 AB 与直线 CD 所成角的余弦值为 ( ) A.5 22 66 B5 22 66 C.5 22 22 D5 22 22 答案 A 解析 AB (2,2,1),CD (2,3,3), cosAB ,CD AB CD |AB |CD | 5 3 22 5 22 66。
4、第第 2 2 课时课时 有理数的混合运算有理数的混合运算 要点感知要点感知 有理数混合运算的顺序:1先,再,最后;2同级运算,从到进行;3如有括号,先做的运算,按括号括号括号依次进行 预习练习预习练习 1 11 1 计算32582时, 应该。
5、背影同步练习自主积累积累中运用,构建知识的殿堂1.选择题。(1)下列词语中加点字的注音有误的一项是( )(2 分)A差(chi)使 寻觅(m) 懦(nu)弱 随声附和(h)B蹒(pn)跚 不屑(xi) 热忱(chn) 惟妙惟肖(xio)C阔绰(zhu) 魁(ku)梧 粗犷(kung) 相行见绌(ch)D酝酿(ning) 狼藉(j) 秀颀(q) 地大物博(b)(2)句中加点词解释不正确的是( )A 琐屑(碎小) 触目伤怀(心里) B 颓唐(坍塌) 情郁于中(心里)C 迂腐(言行守旧,不合时宜) 变卖典质(当) D 拭干(擦) 不能自已(停止、控制)E 这些日子,家中光景。
6、第2课时正弦、余弦值的求法知识点 1正弦、余弦值的求法1.已知RtABC中,C=90,BC=3,AB=5,那么sinA的值是()A.35 B.34 C.45 D.432.2018衢州 如图7-2-12所示,AB是圆锥的母线,BC为底面直径,已知BC=6 cm,圆锥的侧面积为15 cm2,则sinABC的值为()图7-2-12A.34 B.35 C.45 D.533.2017常州模拟 已知在RtABC中,C=90,tanB=43,则cosA=.4.如图7-2-13,在RtABC中,C=90,BC=5,AB=13,求A的三个三角函数值.图7-2-135.如图7-2-14,在RtABC中,C=90,tanA=12,求B的正弦值与余弦值.图7-2-14知识点 2利用正弦、余弦求边长6.在RtABC中,C=90°。
7、1.21.2 空间向量基本定理空间向量基本定理 第第 1 1 课时课时 空间向量基本定理空间向量基本定理 1设 p:a,b,c 是三个非零向量;q:a,b,c为空间的一个基底,则 p 是 q 的( ) A充分不必要条件 B必要不充分条件 C充要条件 D既不充分又不必要条件 答案 B 解析 当非零向量 a,b,c 不共面时,a,b,c可以当基底,否则不能当基底, 当a,b,c为基底时,一定有 a,。
8、1.1 探索勾股定理探索勾股定理 第第 2 课时课时 验证勾股定理验证勾股定理 1.在两千多年前我国古算术上记载有“勾三股四弦五”.你知道它的意思吗? 它的意思是说:如果一个直角三角形的两条直角边长分别为 3 和 4 个长度单 位,那么它的斜边的长一定是 5 个长度单位,而且 3、4、5 这三个数有这样的关 系:32+42=52. (1)请你动动脑筋,能否验证这个事实呢?该如何考虑呢? (2) 。
9、第第 2 2 课时课时 空间向量基本定理的初步应用空间向量基本定理的初步应用 1 已知 O, A, B 是平面上的三个点, 直线 AB 上有一点 C, 满足 2AC CB0, 则OC 等于( ) A2OA OB BOA 2OB C.2 3OA 1 3OB D1 3OA 2 3OB 答案 A 解析 由已知得 2(OC OA )(OB OC )0, OC 2OA OB . 2如图,已知空间四。
10、6.4.3 第第 3 课时课时 余弦定理余弦定理、正弦定理应用举例正弦定理应用举例 学习目标 1.会用正弦定理、余弦定理解决生产实践中有关距离、高度、角度的测量问题. 2.培养提出问题、正确分析问题、独立解决问题的能力. 知识点一 距离问题 类型 图形 方法 两点间不可到达的距离 余弦定理 两点间可视不可到达的距离 正弦定理 两个不可到达的点之间的距离 先用正弦定理, 再用余弦定理 知识点二 高度问题 类型 简图 计算方法 底部可达 测得 BCa,BCAC,AB a tan C. 底部不可达 点 B 与 C, D 共线 测得 CDa 及 C 与ADB 的 度数. 先由正弦定理。
11、第2课时正弦定理的应用一、选择题1在ABC中,A,B,C所对的边分别为a,b,c,其中a4,b3,C60,则ABC的面积为()A3 B3 C6 D6答案B解析SABCabsin C43sin 603.2在ABC中,若abc335,则的值为()A B. C. D答案C解析由条件得,sin Asin C.同理可得sin Bsin C.3在锐角ABC中,角A,B,C的对边分别为a,b,c,且a4bsin A,则cos B的值为()A. B C. D答案A解析由正弦定理及a4bsin A,得sin A4sin Bsin A,又sin A0,4sin B1,sin B,B为锐角,cos B.4在ABC中,已知a3,cos C,SABC4,则b的值为()A. B2 C4 D8答案。
12、第2课时正弦定理的应用学习目标1.了解正弦定理及其变式的结构特征和功能.2.理解三角形面积公式及解斜三角形.3.能用正弦定理解决简单的实际问题知识点一正弦定理的变形公式若ABC的外接圆的半径为R,有2R.(1)abcsin_Asin_Bsin_C;(2),;(3);(4)a2Rsin A,b2Rsin B,c2Rsin C.知识点二边角互化1正弦定理的本质是三角形的边与对角的正弦之间的联系2正弦定理的主要功能是把边化为对角的正弦或者反过来,简称边角互化3使用正弦定理进行边角互化的前提是:已知外接圆半径R或能消掉R.知识点三三角形面积公式在ABC中,内角A,B,C的对边为a,b,c。
13、6.4.3 第第 2 课时课时 正弦定理正弦定理 学习目标 1.能借助向量的运算,探索三角形边长与角度的关系并掌握正弦定理.2.能运用 正弦定理与三角形内角和定理解决简单的解三角形问题. 知识点一 正弦定理 在一个三角形中,各边和它所对角的正弦的比相等. 即 a sin A b sin B c sin C. 知识点二 正弦定理的变形公式 1.a2Rsin A,b2Rsin B,c2Rsin C. 2.sin A a 2R,sin B b 2R,sin C c 2R(其中 R 是ABC 外接圆的半径). 思考 在正弦定理中, 三角形的各边与其所对角的正弦的比都相等, 那么这个比值等于多少? 与该三角形外接圆的直径有什么关。
14、第第 4 4 课时课时 余弦定理正弦定理应用举例余弦定理正弦定理应用举例 1已知海上 A,B 两个小岛相距 10 海里,C 岛临近陆地,若从 A 岛望 C 岛和 B 岛成 60 的视角,从 B 岛望 C 岛和 A 岛成 75 的视角,则 B。
15、第第 5 5 课时课时 余弦定理余弦定理正弦定理的应用正弦定理的应用 1在ABC 中,角 A,B,C 所对的边分别是 a,b,c,若 A30 ,ab2,则ABC 的面积为 A1 B. 3 C2 D2 3 答案 B 解析 在ABC 中,A30。
16、第第 3 3 课时课时 正弦定理正弦定理 二二 1已知 a,b,c 分别是ABC 的内角 A,B,C 所对的边,且满足acos Abcos Bccos C,则ABC 的形状是 A等腰三角形 B直角三角形 C等边三角形 D等腰直角三角形 答案。
17、6.4.3 第第 1 课时课时 余弦定理余弦定理 A 组 素养自测 一选择题 1在ABC 中,若 AB 13,BC3,C120 ,则 AC A1 B2 C3 D4 2如果等腰三角形的周长是底边边长的 5 倍,那么它的顶角的余弦值为 A518。
18、第第 2 2 课时课时 正弦定理正弦定理 一一 1在ABC 中,若 A105 ,B45 ,b2 2,则 c 等于 A1 B2 C. 2 D. 3 答案 B 解析 A105 ,B45 ,C30 . 由正弦定理,得 cbsin Csin B2 。
19、6.4.3 第第 3 课时课时 余弦定理正弦定理应用举例余弦定理正弦定理应用举例 A 组 基础巩固练 一选择题 1学校体育馆的人字屋架为等腰三角形,如图,测得 AC 的长度为 4 m,A30 ,则其跨度 AB 的长为 A12 m B8 m 。
20、6.4.3 第第 2 课时课时 正弦定理正弦定理 A 组 素养自测 一选择题 1在ABC 中,a3,b5,sinA13,则 sinB A15 B59 C53 D1 2在ABC 中,内角 A,B,C 所对的边分别是 a,b,c.若 3a2b,。