第 20 课时 向量的数乘运算及其几何意义课时目标1.理解向量数乘的定义及规定,掌握向量数乘的几何意义2掌握向量数乘的运算法则,会应用法则进行有关计算识记强化1向量数乘的运算律(1)()a(a);(2)()aa a;(3)(a b)ab.2共线向量定理向量 a(a0) 与 b 共线,当且仅当存在唯一
3.1 数乘向量 课时作业含答案Tag内容描述:
1、第 20 课时 向量的数乘运算及其几何意义课时目标1.理解向量数乘的定义及规定,掌握向量数乘的几何意义2掌握向量数乘的运算法则,会应用法则进行有关计算识记强化1向量数乘的运算律(1)()a(a);(2)()aa a;(3)(a b)ab.2共线向量定理向量 a(a0) 与 b 共线,当且仅当存在唯一实数 ,使 ba.课时作业一、选择题1已知 R,则下列命题正确的是( )A|a|a| B| a| |aC|a| |a| D| a|0答案:C解析:当 0 时,| a| a|不成立,A 错误;| a|是一个非负实数,而 |a 是一个向量,所以 B 错误;当 0 或 a 0 时,|a| 0,D 错误故选 C.2已知 a5b, 2a8b, 3( ab)。
2、第 6 课时 两、三位数乘一位数的不连续进位乘1、竖式计算。2 7 2 2 5 2 4 1 1 8 3 3 4 32、用竖式计算。418 372 83136224 4213 5183、小佳每分钟跳绳 116 下,她 3 分钟能跳多少下?答案:一、81 675 96 354二、328 74 2493 2488 852 90三、1163=348(下)。
3、第 8 课时 两、三位数乘一位数的连续进位乘1、用竖式计算。678 397 5215 63542、小乐看一本书,每天看 126 页,8 天看完,这本书一共有多少页?3、航空博物馆上午有 2 批人参观,每批 155 人,下午有 280 人参观。上午有多少人参观?全天一共有多少人参观?答案:一、536 291 2605 2124二、1268=1008(页)三、上午 1552=310(人) 全天:310+280=590(人)。
4、第 5 课时 两、三位数乘一位数的不进位乘1、 4 2 1 3 2 2 2 1 2 3 42、用竖式计算。313 224 3142 42123、晨光少年宫去年招收学员 223 人,今年招收学员的人数是去年的 2 倍。答案:一、84 396 884二、93 48 628 848三、2232=446(人)。
5、6.3.46.3.4 平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示 1.下列各组向量中,能作为表示它们所在平面内所有向量的基底的是 A.e12,2,e21,1 B.e11,2,e24,8 C.e11,0,e20,1 D.e11,2,。
6、22.3 向量数乘运算及其几何意义向量数乘运算及其几何意义 一、选择题 1下列说法中正确的是( ) Aa 与 a 的方向不是相同就是相反 B若 a,b 共线,则 ba C若|b|2|a|,则 b 2a D若 b 2a,则|b|2|a| 考点 向量数乘的定义及运算 题点 向量数乘的定义及几何意义 答案 D 解析 显然当 b 2a 时,必有|b|2|a|. 23(2a4b)等于( ) A5a7b B。
7、2.2.3 向量数乘运算及其几何意义向量数乘运算及其几何意义 基础过关 1将 1 122(2a8b)4(4a2b)化简成最简形式为( ) A2ab B2ba Cab Dba 解析 原式 1 12(4a16b16a8b) 1 12(24b12a)2ba 答案 B 2在ABC 中,已知 D 是 AB 边上的一点,若AD 2DB ,CD 1 3CA CB,则 等于 ( ) A1 3 B2 3 C1 2 。
8、6.3.4 平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示 基础达标 一选择题 1.已知向量 a3,5,bcos ,sin ,且 ab,则 tan 等于 A.35 B.53 C.35 D.53 解析 由 ab,得 5cos 3sin 。
9、6 6. .2.32.3 向量的数乘运算向量的数乘运算 1下列说法中正确的是 Aa 与 a 的方向不是相同就是相反 B若 a,b 共线,则 ba C若b2a,则 b 2a D若 b 2a,则b2a 答案 D 2多选下列各式计算正确的有 A7。
10、2.2.3向量的数乘一、选择题1已知a5e,b3e,c4e,则2a3bc等于()A5e B5eC23e D23e答案C解析2a3bc25e3(3e)4e23e.2下列说法中正确的是()Aa与a的方向不是相同就是相反B若a,b共线,则baC若|b|2|a|,则b2aD若b2a,则|b|2|a|考点向量数乘的定义及运算题点向量数乘的定义及几何意义答案D解析显然当b2a时,必有|b|2|a|.33(2a4b)等于()A5a7b B5a7bC6a12b D6a12b考点向量的线性运算及应用题点向量的线性运算答案D解析利用向量数乘的运算律,可得3(2a4b)6a12b,故选D.4已知a,b是不共线的向量,a2b,a(1)b,且A,B,C三点共线,则实数的值为()A1 B。
11、2.1.4数乘向量一、选择题1.3(2a4b)等于()A.5a7b B.5a7bC.6a12b D.6a12b考点向量的线性运算及应用题点向量的线性运算答案D解析利用向量数乘的运算律,可得3(2a4b)6a12b,故选D.2.在ABC中,如果AD,BE分别为BC,AC上的中线,且a,b,那么等于()A.ab B.abC.ab D.ab答案A解析由题意,得bb()ba,即ba,解得ab.3.设D为ABC所在平面内一点,3,则()A. B.C. D.答案A解析3,3(),即43,.4.如图,AB是O的直径,点C,D是半圆弧AB上的两个三等分点,a,b,则等于()A.ab B.abC.ab D.ab答案D解析连接CD,OD,如图所示.点C,D是半圆弧AB上的两个三等分点,。
12、6.2.36.2.3 向量的数乘运算向量的数乘运算 基础达标 一选择题 1.32a4b等于 A.5a7b B.5a7b C.6a12b D.6a12b 解析 利用向量数乘的运算律,可得 32a4b6a12b,故选 D. 答案 D 2.下列说。
13、3从速度的倍数到数乘向量3.1数乘向量学习目标1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法,并能熟练地运用这些知识处理有关共线向量问题知识点一向量数乘的定义一般地,实数与向量a的积是一个向量,记作a.它的长度为|a|a|.它的方向:当0时,a与a的方向相同;当0时,a与a的方向相反;当0时,a0,方向任意知识点二向量数乘的运算律(1)(a)()a.(2)()aaa.(3)(ab)ab.知识点三向量共线定理1向量共线的判定定理a 是一个非零向量,。
14、3从速度的倍数到数乘向量3.1数乘向量一、选择题1下列说法中正确的是()Aa与a的方向不是相同就是相反B若a,b共线,则baC若|b|2|a|,则b2aD若b2a,则|b|2|a|答案D解析显然当b2a时,必有|b|2|a|.23(2a4b)等于()A5a7b B5a7bC6a12b D6a12b考点向量的线性运算及应用题点向量的线性运算答案D解析利用向量数乘的运算律,可得3(2a4b)6a12b,故选D.3已知P,A,B,C是平面内四点,且,则下列向量一定共线的是()A.与 B.与C.与 D.与考点向量共线定理及其应用题点利用向量共线定理判定向量共线答案B解析因为,所以0,即2,所以与共线4如图,在ABC中,a,b。
15、3从速度的倍数到数乘向量31数乘向量基础过关1下列说法中正确的是()Aa与a的方向不是相同就是相反B若a,b共线,则baC若|b|2|a|,则b2aD若b2a,则|b|2|a|解析显然b2a时,必有|b|2|a|.答案D2已知m,n是实数,a,b是向量,则下列命题中正确的为()m(ab)mamb;(mn)amana;若mamb,则ab;若mana,则mn.ABCD解析和属于数乘对向量与实数的分配律,正确;中,若m0,则不能推出ab,错误;中,若a0,则m,n没有关系,错误答案B3设D,E,F分别为ABC的三边BC,CA,AB的中点,则等于()A. B. C. D.解析如图,()2.答案C4已知向量ae13e2,be1e2,则a与b的关系。