1 两角和与差的正切公式两角和与差的正切公式 课时分层作业课时分层作业 建议用时:60 分钟 合格基础练 一选择题 1已知点 P1,a在角 的终边上,tan413,则实数 a 的值是 A2 B.12 C2 D12 C tan4tan tan,3.1.2 两角和与差的正弦、余弦、正切公式两角和与差的正
3.1.3 两角和与差的正切 学案含答案Tag内容描述:
1、1 两角和与差的正切公式两角和与差的正切公式 课时分层作业课时分层作业 建议用时:60 分钟 合格基础练 一选择题 1已知点 P1,a在角 的终边上,tan413,则实数 a 的值是 A2 B.12 C2 D12 C tan4tan tan。
2、3.1.2 两角和与差的正弦、余弦、正切公式两角和与差的正弦、余弦、正切公式(二二) 基础过关 1已知 , 为任意角,则下列等式: sin()sin cos cos sin ; cos()cos cos sin sin ; cos 2 sin ; tan() tan tan 1tan tan 其中恒成立的等式有( ) A2 个 B3 个 C4 个 D1 个 解析 恒成立 答案 B 2若 ta。
3、3.1.2 两角和与差的正弦、余弦、正切公式两角和与差的正弦、余弦、正切公式(一一) 基础过关 1sin 245 sin 125 sin 155 sin 35 的值是( ) A 3 2 B1 2 C1 2 D 3 2 解析 原式sin 65 sin 55 sin 25 sin 35 cos 25 cos 35 sin 25 sin 35 cos(35 25 )cos 60 1 2 答案 B 2若。
4、31.2两角和与差的正弦学习目标1.了解两角和与差的正弦和两角和与差的余弦间的关系.2.会推导两角和与差的正弦公式,掌握公式的特征.3.能运用公式进行三角函数的有关化简求值知识点两角和与差的正弦1两角和与差的正弦公式名称简记符号公式使用条件两角和的正弦S()sin()sin cos cos sin ,R两角差的正弦S()sin()sin cos cos sin ,R记忆口诀:“正余余正,符号相同”2辅助角公式asin xbcos x,令cos ,sin ,则有asin xbcos x(cos sin xsin cos x)sin(x),其中tan ,为辅助角1.任意角,都有sin()sin cos cos sin .()提示由两角和的正弦公式知。
5、2.3两角和与差的正切函数一、选择题1若tan ,tan(),则tan 等于()A. B. C. D.答案A解析tan tan().2.tan 23tan 97tan 23tan 97的值为()A2 B2 C. D0答案C解析tan(2397)tan 120,tan 23tan 97tan 23tan 97,原式tan 23tan 97(tan 23tan 97).3已知AB45,则(1tan A)(1tan B)的值为()A1 B2 C2 D不确定答案B解析(1tan A)(1tan B)1(tan Atan B)tan Atan B1tan(AB)。
6、3.1.3两角和与差的正切一、选择题1.若tan ,tan(),则tan 等于()A. B. C. D.答案A解析tan tan().2.已知tan(),tan,则tan的值为()A. B. C. D.答案A解析因为(),所以tantan.3.A,B,C是ABC的三个内角,且tan A,tan B是方程3x25x10的两个实数根,则ABC是()A.钝角三角形 B.锐角三角形C.直角三角形 D.无法确定答案A解析tan Atan B,tan Atan B,tan(AB),tan Ctan(AB),C为钝角,即ABC为钝角三角形.4.若tan 28tan 32a,则tan 28tan 32等于()A.a B.(1a)C.(a1) D.(a1)答案B解析tan(。
7、3.1.3 两角和与差的正切,第三章 3.1 和角公式,学习目标 1.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公式. 2.能利用两角和与差的正切公式进行化简、求值、证明. 3.熟悉两角和与差的正切公式的常见变形,并能灵活应用.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 两角和与差的正切,怎样由两角和的正弦、余弦公式得到两角和的正切公式?,答案,分子分母同除以cos cos ,便可得到.,思考2,由两角和的正切公式如何得到两角差的正切公式?,答案,答案 用替换tan()中的即可得到.,梳理,两角和与差的正切公式,(1)T。
8、3.1.3两角和与差的正切基础过关1在ABC中,若tanAtanBtanAtanB1,则cosC的值是()A B. C. D答案B解析由tanAtanBtanAtanB1,可得1,即tan(AB)1,AB(0,),AB,则C,cosC.2已知tan(),tan,那么tan等于()A. B. C. D.答案C解析tantan.3已知tan,tan,0,则的值是()A. B. C. D.答案C4若A,B,C是ABC的三个内角,且tanA,tanB是方程3x25x10的两个实数根,则ABC是()A钝角三角形B锐角三角形C直角三角形D无法确定答案A解析tanAtanB,tanAtanB,。
9、5.1.2两角和与差的正切基础过关1在ABC中,若tanAtanBtanAtanB1,则cosC的值是()AB.C.D答案B解析由tanAtanBtanAtanB1,可得1,即tan(AB)1,AB(0,),AB,则C,cosC.2已知tan(),tan,那么tan等于()A. B.C.D.答案C解析tantan.3已知tan,tan,0,则的值是()A. B.C.D.答案C4A,B,C是ABC的三个内角,且tanA,tanB是方程3x25x10的两个实数根,则ABC是()A钝角三角形B锐角三角形C直角三角形D无法确定答案A解析tanAtanB,tanAtanB,tan(AB),tanCtan(AB),C为。
10、2.3两角和与差的正切函数基础过关1已知,sin ,则tan的值等于()A.B7CD7解析已知,sin ,则tan ,tan().故选A.答案A2.()A. B.CD解析原式tan(4575)tan 120.答案D3已知tan ,tan(),那么tan(2)的值为()A B.C D.解析tan(2)tan().答案D4已知tan(),tan 2,则tan _.解析(),tan 7.答案75已知,tan7,则sin _.解析由tan7,tan 0,又,sin .答案6求下列各式的值(1);(2)(1tan 59)(1tan 76。
11、3.1.3 两角和与差的正切,第3章 3.1 两角和与差的三角函数,学习目标 1.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公式. 2.能利用两角和与差的正切公式进行化简、求值、证明. 3.熟悉两角和与差的正切公式的常见变形,并能灵活应用.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 两角和与差的正切公式,思考1,怎样由两角和的正弦、余弦公式得到两角和的正切公式?,分子分母同除以cos cos ,便可得到.,答案,思考2,由两角和的正切公式如何得到两角差的正切公式?,答案 用替换tan()中的即可得到.,答案,梳理,知识点二 两。
12、1 第第 2 课时课时 两角和与差的正弦余弦公式两角和与差的正弦余弦公式 学 习 目 标 核 心 素 养 1.掌握两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦公式 2会用两角和与差的正弦余弦公式进行简单的三角函数的求值化简计算等。
13、31.2 两角和与差的正弦两角和与差的正弦、余弦余弦、正切公式正切公式(二二) 学习目标 1.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公式.2.能利用两 角和与差的正切公式进行化简、求值、证明.3.熟悉两角和与差的正切公式的常见变形,并能 灵活应用 知识点一 两角和与差的正切公式 名称 简记符号 公式 使用条件 两角和的正切 T() tan() tan tan 1tan tan。
14、1 5.5 三角恒等变换三角恒等变换 5.5.1 两角和与差的正弦余弦和正切公式两角和与差的正弦余弦和正切公式 第第 1 课时课时 两角差的余弦公式两角差的余弦公式 学 习 目 标 核 心 素 养 1.了解两角差的余弦公式的推导过程重点 2。
15、3.1.3两角和与差的正切学习目标1.能利用两角和与差的正、余弦公式推导出两角和与差的正切公式.2.能利用两角和与差的正切公式进行化简、求值、证明.3.熟悉两角和与差的正切公式的常见变形,并能灵活应用.知识点一两角和与差的正切公式名称简记符号公式使用条件 两角和的正切Ttan(),均不等于k(kZ)两角差的正切Ttan(),均不等于k(kZ)知识点二两角和与差的正切公式的变形(1)T的变形:tan tan tan()(1tan tan ).tan tan tan tan tan()tan().tan tan 1.(2)T的变形:tan tan tan()(1tan tan ).tan tan tan tan tan()tan().tan tan 1.1.对于任意。
16、2.3两角和与差的正切函数学习目标1.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公式.2.能利用两角和与差的正切公式进行化简、求值、证明.3.熟悉两角和与差的正切公式的常见变形,并能灵活应用知识点一两角和与差的正切名称简记符号公式使用条件 两角和的正切Ttan(),均不等于k(kZ)两角差的正切Ttan(),均不等于k(kZ)知识点二两角和与差的正切公式的变形1T的变形tan tan tan()(1tan tan )tan tan tan tan tan()tan()tan tan 1.2T的变形:tan tan tan()(1tan tan )tan tan tan tan tan()tan()tan tan 1.1对于任意角,总有tan()。
17、1 第第 3 课时课时 两角和与差的正切公式两角和与差的正切公式 学 习 目 标 核 心 素 养 1.能利用两角和与差的正弦余弦公式推导出两角和与差的正切公式. 2.能利用两角和与差的正切公式进行化简求值证明重点 3.熟悉两角和与差的正切公。
18、3.1.3两角和与差的正切一、选择题1已知tan 3,则tan等于()A2 B2 C. D考点两角和与差正切公式题点利用两角和与差的正切公式求值答案D解析tantan.2(1tan 18)(1tan 27)的值是()A. 1C2 2(tan 18tan 27)答案C解析(1tan 18)(1tan 27)1tan 18tan 27tan 18tan 271tan 45(1tan 18tan 27)tan 18tan 272.3设向量a(cos ,1),b(2,sin ),若ab,则tan等于()A B. C3 D3考点两角和与差的正切公式题点两角和与差的正切公式的综合应用答案B解析由a&。
19、3.1.3两角和与差的正切基础过关1.A,B,C是ABC的三个内角,且tan A,tan B是方程3x25x10的两个实数根,则ABC是()A.钝角三角形 B.锐角三角形C.直角三角形 D.无法确定解析tan Atan B,tan Atan B,tan(AB),tan Ctan(AB),C为钝角.答案A2.若tan ,tan 是方程x22x40的两根,则|tan()|()A. B. C. D.2解析tan ,tan 是方程x22x40的两根,tan tan 2,tan tan 4,解得tan 1,tan 1;或tan 1,tan 1;tan(),|tan()|.答案A3.已知tan tan 2,tan()4,则tan tan _.解析4tan(),t。
20、3.1.3两角和与差的正切学习目标1.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公式.2.能利用两角和与差的正切公式进行化简、求值、证明.3.熟悉两角和与差的正切公式的常见变形,并能灵活应用知识点一两角和与差的正切公式名称简记符号公式使用条件 两角和的正切T()tan(),均不等于k(kZ)两角差的正切T()tan(),均不等于k(kZ)知识点二两角和与差的正切公式的变形1T()的变形tan tan tan()(1tan tan )tan tan tan tan tan()tan()tan tan 1.2T()的变形tan tan tan()(1tan tan )tan tan tan tan tan()tan()tan tan 1.1对于任意角,。