3.1.2 第2课时 直线与椭圆 学案含答案

62.2平行关系 第1课时直线与平面平行 学习目标 1理解直线与平面平行的判定定理、性质定理的含义2会用图形语言、文字语言、符号语言准确描述直线与平面平行的判定定理、性质定理,并知道其地位和作用3能运用直线与平面平行的判定定理、性质定理证明一些空间线面关系的简单问题 预习导引 1直线与平面平行的定义

3.1.2 第2课时 直线与椭圆 学案含答案Tag内容描述:

1、62.2平行关系第1课时直线与平面平行学习目标 1理解直线与平面平行的判定定理、性质定理的含义2会用图形语言、文字语言、符号语言准确描述直线与平面平行的判定定理、性质定理,并知道其地位和作用3能运用直线与平面平行的判定定理、性质定理证明一些空间线面关系的简单问题预习导引1直线与平面平行的定义ll2线面平行的判定定理、性质定理定理表示线面平行的判定定理线面平行的性质定理文字叙述平面外一条直线与此平面内的一条直线平行,则该直线与该平面平行一条直线与一个平面平行,则过该直线的任一平面与此平面的交线与该直线平行符号。

2、第2课时圆与圆的位置关系学习目标 1掌握圆与圆的位置关系及判定方法2能利用直线与圆的位置关系解决简单的实际问题3体会用代数方法处理几何问题的思想知识链接1判断直线与圆的位置关系的两种方法为代数法、几何法2两圆的位置关系有外离、外切、相交、内切、内含预习导引1圆与圆位置关系的判定(1)几何法:若两圆的半径分别为r1,r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1、r2的关系dr1r2dr1r2|r1r2|dr1r2d|r1r2|d|r1r2|(2)代数法:通过两圆方程组成方程组的公共解的个数进行判断一元二。

3、2.3直线与圆、圆与圆的位置关系第1课时直线与圆的位置关系学习目标1.掌握直线与圆的三种位置关系:相交、相切、相离.2.会用代数法和几何法来判定直线与圆的三种位置关系.3.会用直线与圆的位置关系解决一些实际问题.知识点直线AxByC0与圆(xa)2(yb)2r2的位置关系及判断位置关系相交相切相离公共点个数2个1个0个判定方法几何法:设圆心到直线的距离为ddr代数法:由消元得到一元二次方程,可得方程的判别式0001.若直线与圆有公共点,则直线与圆相交.()2.如果直线与圆组成的方程组有解,则直线和圆相交或相切.()3.若圆心到直线的距离大于半径,。

4、第2课时直线的点斜式方程学习目标 1掌握直线的点斜式方程和直线的斜截式方程2结合具体实例理解直线的方程和方程的直线概念及直线在y轴上的截距的含义3会根据斜截式方程判断两直线的位置关系知识链接下列说法中,若两条不重合的直线平行,则它们的斜率相等;若两直线的斜率相等,则两直线平行;若两直线垂直,则其斜率之积为1;若两直线的斜率之积为1,则它们互相垂直正确的有_答案预习导引1直线的点斜式方程名称已知条件示意图方程使用范围点斜式点P(x0,y0)和斜率kyy0k(xx0)斜率存在的直线2.直线l在坐标轴上的截距(1)直线在y轴上的截距:。

5、第第 2 课时课时 直线的极坐标方程直线的极坐标方程 学习目标 1.掌握直线的极坐标方程.2.能熟练进行曲线的极坐标方程和直角坐标方程间的 互化.3.能用极坐标方程解决相关问题 知识点 直线的极坐标方程 思考 1 直线 l 的极坐标方程 f(,)0 应该有什么要求? 答案 直线 l 上任意一点 M 至少有一个极坐标适合方程 f(,)0; 以 f(,)0 的解为坐标的点都在直线 l 上 思考 2 。

6、第2课时两条直线的垂直学习目标1.理解并掌握两条直线垂直的条件.2.能根据已知条件判断两条直线垂直.3.会利用两直线垂直求参数及直线方程.知识点两条直线垂直的判断图示对应关系l1l2(两直线斜率都存在)k1k21l1的斜率不存在,l2的斜率为0l1l2一、两条直线垂直关系的判定例1判断下列各组中的直线l1与l2是否垂直:(1)l1经过点A(1,2),B(1,2),l2经过点M(2,1),N(2,1);(2)l1的斜率为10,l2经过点A(10,2),B(20,3);(3)l1经过点A(3,4),B(3,100),l2经过点M(10,40),N(10,40).解(1)直线l1的斜率k12,直线l2的斜率k2,k1k21,故l1与l2不垂直.(。

7、第2课时直线与平面平行一、选择题1若直线a,b是异面直线,a,则b与平面的位置关系是()A平行 B相交Cb D平行或相交答案D解析a,b异面,且a,b,b与平行或相交2.如图,已知S为四边形ABCD外一点,G,H分别为SB,BD上的点,若GH平面SCD,则()AGHSABGHSDCGHSCD以上均有可能答案B解析因为GH平面SCD,GH平面SBD,平面SBD平面SCDSD,所以GHSD,显然GH与SA,SC均不平行,故选B.3.P为矩形ABCD所在平面外一点,矩形对角线交点为O,M为PB的中点,给出五个结论:OMPD;OM平面PCD;OM平面PDA;OM平面PBA;OM平面PBC.其中正确的个数为()A1 B2 C3 D4答案C解。

8、2.2.2直线与圆的位置关系第1课时直线与圆的位置关系学习目标1.掌握直线与圆的三种位置关系:相交、相切、相离.2.会用代数法和几何法来判定直线与圆的三种位置关系.3.会用直线与圆的位置关系解决一些实际问题.知识点直线与圆的三种位置关系及判定位置关系相离相切相交图示几何法比较d与r的大小drdrdr代数法依据方程组解的情况方程组无解方程组只有一组解方程组有两组不同解一、直线与圆的位置关系的判断例1求实数m的取值范围,使直线xmy30与圆x2y26x50分别满足:相交;相切;相离.解圆的方程化为标准形式为(x3)2y24,故圆心(3,0)到直线xmy3。

9、1.2.3直线与平面的位置关系第1课时直线与平面平行的判定学习目标1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系.2.掌握空间中直线与平面平行的判定定理.知识点一直线与平面的位置关系位置关系直线a在平面内直线a在平面外直线a与平面相交直线a与平面平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示aaAa图形表示提示:利用公共点的个数可以判断直线与平面的位置关系.知识点二直线与平面平行的判定定理表示定理图形文字符号直线与平面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那么这条直。

10、1.2.3空间中的垂直关系第1课时直线与平面垂直学习目标1.理解直线与平面垂直的定义及性质.2.掌握直线与平面垂直的判定定理及推论,并会利用定理及推论解决相关的问题知识点一直线与平面垂直的定义及性质1直线与直线垂直如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直2直线与平面垂直的定义及性质定义及符号表示图形语言及画法有关名称重要结论如果一条直线(AB)和一个平面()相交于点O,并且和这个平面内过交点(O)的任何直线都垂直我们就说这条直线和这个平面互相垂直,记作AB把直线AB画成和表示平。

11、第2课时椭圆的几何性质及应用学习目标1.进一步巩固椭圆的简单几何性质.2.掌握直线与椭圆位置关系等相关知识知识点一点与椭圆的位置关系思考类比点与圆的位置关系的判定,你能给出点P(x0,y0)与椭圆1(ab0)的位置关系的判定吗?答案当P在椭圆外时,1;当P在椭圆上时,1;当P在椭圆内时,b0),则点P与椭圆的位置关系如下表所示:位置关系满足条件P在椭圆外1P在椭圆上1P在椭圆内b0)的位置关系?答案联立消去y得关于x的一元二次方程梳理直线与椭圆的三种位置关系位置关系解的个数的取值相交两解0相切一解0相离无解0。

12、第2课时 异面直线学习目标1.理解异面直线的定义及判定,能判断两条直线是不是异面直线.2.理解异面直线所成的角的概念.知识点一异面直线的判断方法内容定义法不同在任何一个平面内的两条直线叫做异面直线定理法过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线反证法判定两条直线既不平行也不相交,那么这两条直线就是异面直线知识点二异面直线所成的角定义前提两条异面直线a,b作法经过空间任意一点O,作直线aa,bb结论我们把a和b所成的锐角(或直角)叫做异面直线a,b所成的角范围记异面直线a与b所成的角为,则090。

13、第第 2 2 课时课时 函数的平均变化率函数的平均变化率 学习目标 1.了解直线的斜率及意义.2.了解函数的平均变化率,理解函数单调性与平均变化 率的关系.3.会用函数单调性的充要条件证明简单函数的单调性 知识点一 直线的斜率 1直线的斜率的定义:一般地,给定平面直角坐标系中的任意两点 A(x1,y1),B(x2,y2),当 x1x2时,称y2y1 x2x1为直线 AB 的斜率;当 x1x2 时。

14、第2课时直线与平面平行的性质学习目标1.理解直线与平面平行的性质定理.2.掌握直线与平面平行的性质定理,并能应用性质定理证明一些简单的问题.知识点直线与平面平行的性质定理表示定理图形文字符号直线与平面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行ab一、线面平行的性质定理的应用命题角度1用线面平行的性质定理证明线线平行例1如图所示,在四棱锥PABCD中,底面ABCD是平行四边形,AC与BD交于点O,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:APGH.证。

15、第2课时直线与平面平行学习目标1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系.2.学会用图形语言、符号语言表示三种位置关系.3.掌握直线与平面平行的判定定理和性质定理,并能利用两个定理解决空间中的平行关系问题知识点一直线与平面的位置关系直线与平面的位置关系定义图形语言符号语言直线在平面内有无数个公共点a直线与平面相交有且只有一个公共点aA直线与平面平行没有公共点a知识点二直线与平面平行的判定直线与平面平行的判定定理文字语言符号表示图形表示如果不在一个平面内一条直线和平面内的一条直线平行,那么这。

16、1.2 椭圆的简单性质椭圆的简单性质 第第 1 课时课时 椭圆的简单性质椭圆的简单性质 学习目标 1.依据椭圆的方程研究椭圆的简单性质,并正确地画出它的图形.2.依据几何条件 求出椭圆方程,并利用椭圆方程研究它的性质、图形. 知识点一 椭圆的简单性质 焦点的位置 焦点在 x 轴上 焦点在 y 轴上 图形 标准方程 x2 a2 y2 b21(ab0) y2 a2 x2 b21(ab0) 范围 axa,byb bxb,aya 顶点 A1(a,0),A2(a,0),B1(0,b),B2(0, b) A1(0,a),A2(0,a), B1(b,0),B2(b,0) 轴长 短轴长2b,长轴长2a 焦点 ( a2b2,0) (0, a2b2) 焦距 |F1F2|2a2b2 对称。

17、第第 2 课时课时 直线与椭圆直线与椭圆 题型一题型一 直线与椭圆的位置关系直线与椭圆的位置关系 1若直线 ykx1 与椭圆x 2 5 y2 m1 总有公共点,则 m 的取值范围是( ) Am1 Bm0 C00,即3 2b0)的右焦点为 F(3,0),过点 F 的直线交椭圆 E 于 A,B 两 点若 AB 的中点坐标为(1,1),则 E 的方程为( ) A.x 2 45 y2 361 B.x 2 36 y2 271 C.x 2 27 y2 181 D.x 2 18 y2 91 答案 D 解析 设 A(x1,y1),B(x2,y2), 所以 x21 a2 y21 b21, x22 a2 y22 b21 运用点差法, 所以直线 AB 的斜率为 kb 2 a2, 设直线方程为 yb 2 a2(x3), 联立直线与椭圆的方。

18、第第 2 课时课时 直线与椭圆直线与椭圆 一、选择题 1.若点 P(a,1)在椭圆x 2 2 y2 31 的外部,则 a 的取值范围为( ) A. 2 3 3 ,2 3 3 B. ,2 3 3 2 3 3 , C. 4 3, D. ,4 3 考点 点与椭圆的位置关系 题点 由点与椭圆的位置关系求参数 答案 B 解析 因为点 P 在椭圆x 2 2 y2 31 的外部, 所以a 2 2 1 2 3 1,解得 a2 3 3 或 a0)相交于 A,B 两点,若椭圆的离心率为 2 2 ,焦 距为 2,则线段 AB 的长是( ) A.2 2 3 B.2 C. 2 D.4 2 3 考点 直线与椭圆的位置关系 题点 直线与椭圆相交求弦长 答案 D 解析 由题意得椭圆方程为x 2 2y 21, 联立。

19、第2课时 直线与椭圆,第三章 1.2 椭圆的简单性质,学习目标,XUEXIMUBIAO,1.进一步巩固椭圆的简单性质. 2.掌握点与椭圆、直线与椭圆的位置关系等知识. 3.会判断直线与椭圆的位置关系.,NEIRONGSUOYIN,内容索引,自主学习,题型探究,达标检测,1,自主学习,PART ONE,知识点一 点与椭圆的位置关系,知识点二 直线与椭圆的位置关系,消去y得到一个关于x的一元二次方程. 直线与椭圆的位置关系、对应一元二次方程解的个数及的取值的关系如表所示.,两,一,无,知识点三 弦长公式 设直线l:ykxm(k0,m为常数)与椭圆 相交,两个交点为A(x1,y1),B(x2,y2),则。

20、第第 2 课时课时 直线与椭圆直线与椭圆 学习目标 1.进一步巩固椭圆的简单性质.2.掌握点与椭圆、直线与椭圆的位置关系等知识.3. 会判断直线与椭圆的位置关系. 知识点一 点与椭圆的位置关系 点 P(x0,y0)与椭圆x 2 a2 y2 b21(ab0)的位置关系: 点 P 在椭圆上x 2 0 a2 y20 b21; 点 P 在椭圆内部x 2 0 a2 y20 b21. 知识点二 直线与椭圆的位置关系 直线 ykxm 与椭圆x 2 a2 y2 b21(ab0)的位置关系的判断方法:联立 ykxm, x2 a2 y2 b21. 消去 y 得到一个关于 x 的一元二次方程. 直线与椭圆的位置关系、对应一元二次方程解的个数及 的取值的关系。

【3.1.2 第2课时 直线与椭圆 】相关PPT文档
3.1.2 第2课时 直线与椭圆ppt课件
【3.1.2 第2课时 直线与椭圆 】相关DOC文档
第2课时 两条直线的垂直 学案(含答案)
第2课时 异面直线 学案(含答案)
3.1.2 第2课时 直线与椭圆 学案(含答案)
标签 > 3.1.2 第2课时 直线与椭圆 学案含答案[编号:101493]