20212021 年中考数学查缺补漏再训练年中考数学查缺补漏再训练 2626 个微专题个微专题 ( (全国通用全国通用) ) 专题专题 17 17 必考的平移类问题再练必考的平移类问题再练 ( (共共 1212 道小题道小题) ) 1(20192019 湖北黄冈)湖北黄冈) 已知点A的坐标为 (2
2021年中考数学专题复习 专题32中考几何平移类问题教师Tag内容描述:
1、 20212021 年中考数学查缺补漏再训练年中考数学查缺补漏再训练 2626 个微专题个微专题 ( (全国通用全国通用) ) 专题专题 17 17 必考的平移类问题再练必考的平移类问题再练 ( (共共 1212 道小题道小题) ) 1(20192019 湖北黄冈)湖北黄冈) 已知点A的坐标为 (2, 1) , 将点A向下平移 4 个单位长度, 得到的点A的坐标是 ( ) A (6,1)。
2、 专题专题 14 14 角平分线问题角平分线问题 1.1.角的平分线定义:角的平分线定义: 从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因 为 OC 是AOB 的平分线,所以1=2=AOB,或AOB=21=22. 类似地,还有角的三等分线等. 2.作角平分线 角平分线的作法(尺规作图) 以点 O 为圆心,任意长为半径画弧,交 OA、OB 于 C、D 两。
3、 专题专题 3838 反比例函数反比例函数 1反比例函数:反比例函数:形如 y x k (k 为常数,k0)的函数称为反比例函数。其他形式 xy=k、 1 kxy。 2图像:图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对 称轴:直线 y=x 和 y=-x。对称中心是:原点。它的图像与 x 轴、y 轴都没有交点,即双曲线的两个分支无 限接近坐标轴,但永。
4、 专题专题 37 37 二次函数问题二次函数问题 1.二次函数的概念二次函数的概念: 一般地,自变量 x 和 y 之间存在如下关系: y=ax2+bx+c(a0,a、b、c 为常数),则称 y 为 x 的二次函 数。抛物线)0,( 2 acbacbxaxy是常数,叫做二次函数的一般式。 2.2.二次函数二次函数 y=axy=ax 2 2 +bx+c(a +bx+c(a0)0)的图像与性质的图。
5、 20212021 年中考数学查缺补漏再训练年中考数学查缺补漏再训练 2626 个微专题个微专题 ( (全国通用全国通用) ) 专题专题 17 17 必考的平移类问题再练必考的平移类问题再练 ( (共共 1212 道小题道小题) ) 1(20192019 湖北黄冈)湖北黄冈) 已知点A的坐标为 (2, 1) , 将点A向下平移 4 个单位长度, 得到的点A的坐标是 ( ) A (6,1)。
6、菱形存在性问题巩固练习菱形存在性问题巩固练习(基础基础) 1 如图,矩形 ABCD 中,ABa,BC6,E、F 分别是 AB、CD 的中点 (1)求证:四边形 AECF 是平行四边形; (2)是否存在 a 的值使得四边形 AECF 为菱形,若存在求出 a 的值,若不存在说明理由; 【解答】(1)见解析;(2)不存在 【解析】(1)证明:四边形 ABCD 是矩形, ABCD,ADBC, 又E、F 。
7、矩形存在性问题巩固练习矩形存在性问题巩固练习(基础基础) 1 如图, 点 O 是平行四边形 ABCD 的对称中心, 将直线 DB 绕点 O 顺时针方向旋转, 交 DC、 AB 于点 E、 F (1)证明:DEOBFO; (2)若 DB2,AD1,AB 当 DB 绕点 O 顺时针方向旋转 45时,判断四边形 AECF 的形状,并说明理由; 在直线 DB 绕点 O 顺时针方向旋转的过程中,是否存在矩形。
8、第 1 页 / 共 27 页 专题专题 28 求几何图形面积及面积法解题的问题求几何图形面积及面积法解题的问题 一、几何图形面积公式一、几何图形面积公式 1.三角形的面积:设三角形底边长为 a,底边对应的高为 h,则面积 S=ah/2 2.平行四边形的面积:设平行四边形的底边长为 a,高为 h,则面积 S=ah 3.矩形的面积:设矩形的长为 a,宽为 b,则面积 S=ab 4.正方形的面积:设正。
9、 专题专题 30 尺规作图问题尺规作图问题 1.1.尺规作图的定义:尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法尺规作图可 以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。 2.2.尺规作图的五种基本情况尺规作图的五种基本情况 (1)作一条线段等于已知线段; (2)作一个角等于已知角; (3)作已知线段的垂直平分线; (4)作已知角的角平分线。
10、 专题专题 42 42 中考数学史类试题解法中考数学史类试题解法 初中阶段了解一些著名的中外数学家的事迹及其贡献,可以激发学生学习数学的积极性和主动性,通 过学习数学家研究问题的思想,提升学生数学观念、科学思维、科学探究、科学态度等核心素养的是十分 重要的举措。 1.1.秦九韶秦九韶 秦九韶(1208 年1261 年)南宋官员、数学家.著作数书九章,其中的大衍求一术、三斜求积术和 秦九韶算法是具。
11、专题专题 53 53 中考几何动态试题解法中考几何动态试题解法 一、动态问题概述一、动态问题概述数数 1.就运动类型而言,有函数中的动点问题有图象问题、面积问题、最值问题、和差问题、定值问题和存在性 问题等。怎 2.就运动对象而言,几何图形中的动点问题有点动、线动、面动三大类。怎样 3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。 4.动态问题一般分两类,一类是代数综合方面。
12、专题专题 52 中考数学最值问题中考数学最值问题 在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分 为几何最值和代数最值两大部分。 一、解决几何最值问题的要领一、解决几何最值问题的要领 (1)两点之间线段最短; (2)直线外一点与直线上所有点的连线段中,垂线段最短; (3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。 二、解决代。
13、 专题专题 41 概率问题概率问题 一、确定事件和随机事件一、确定事件和随机事件 1确定事件 (1)必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。 (2)不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。 2随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件。 (1)有些事情我们能确定他一定会发生,这些事情称为必然事件; (。
14、 专题专题 29 几何问题辅助线添加技巧几何问题辅助线添加技巧 全国各地每年的中考试卷里都会出现考查几何的证明和计算问题,在解答试题过程中,我们发现当题 设条件不够,必须添加辅助线,把分散条件集中,建立已知和未知的桥梁,结合学过的知识,采用一定的 数学方法,把问题转化为自己能解决的问题。学会添加辅助线技巧,是培养学生科学思维、科学探究的重 要途径。所以希望大家学深学透添加辅助线的技巧和方法。 一。
15、 几何变换之平移巩固练习几何变换之平移巩固练习(提优提优) 1. 在平面直角坐标系中,若将抛物线先向右平移 3 个单位长度,再向上平移 2 个单位 长度,则经过这两次平移后所得抛物线的顶点坐标是( ) A.(2,3) B.(1,4) C.(1,4) D.(4,3) 【解答】D 【解析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐 标,下减上加,因此,将抛物。
16、几何变换之平移巩固练习几何变换之平移巩固练习(基础基础) 1. 在平面直角坐标系中,将抛物线向上(下)或向左(右)平移了 m 个单位,使平移后的抛 物线恰好经过原点,则的最小值为( ) A1 B2 C3 D6 【解答】B 【解析】计算出函数与 x 轴、y 轴的交点,将图象适当运动,即可判断出抛物线移动的距离及方向: 当 x=0 时,y=6,故函数与 y 轴交于 C(0,6), 当 y。
17、 专题专题 39 39 中考函数综合类问题中考函数综合类问题 1.一次函数与二次函数的综合。 2.一次函数与反比例函数的综合。 3.二次函数与反比例函数的综合。 4.一次函数、二次函数和反比例函数的综合。 5.其他情况下的综合。 【例题【例题 1】 (2020青岛青岛)已知在同一直角坐标系中, 二次函数 yax2+bx 和反比例函数 y= 的图象如图所示, 则一次函数 y= xb 的图象可能。
18、 专题专题 33 33 中考几何折叠翻折类问题中考几何折叠翻折类问题 1.1.轴对称轴对称( (折痕折痕) )的性质:的性质: (1)成轴对称的两个图形全等。 (2)对称轴与连结“对应点的线段”垂直。 (3)对应点到对称轴的距离相等。 (4)对应点的连线互相平行。 也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平 分线.对称的图形都全等. 2.2.折叠。
19、 专题专题 34 34 中考几何旋转类问题中考几何旋转类问题 1 1旋转的定义:旋转的定义:在平面内,将一个图形绕某一点按某个方向转动一个角度,这样的运动叫做图形的旋转。 这个定点叫做旋转中心,转动的角度叫做旋转角。 2. 2. 旋转的旋转的性质性质: (1)对应点到旋转中心的距离相等,对应线段相等,对应角相等; (2)对应点与旋转中心所连线段的夹角等于旋转角。 3 3旋转对称中心:旋转对称中。
20、 专题专题 32 32 中考几何平移类问题中考几何平移类问题 1.1.平移的定义:平移的定义:平面图形的每个点沿着某一方向移动相同的距离,这样的图形运动称为平移.平移是由移动 的方向和移动的距离所决定.平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样 的两个点叫做对应点。 2.2.平移的特点:平移的特点:经平移运动后的图形图形的位置发生变化, 形状和大小不变. 3.3.理解并。