专题专题 20 20 相似三角形问题相似三角形问题 一、比例一、比例 1成比例线段(简称比例线段):对于四条线段 a、b、c、d,如果其中两条线段的长度的比与另两条线段的 长度的比相等,即 d c b a (或 a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线段。如果作为 比例内项的是
2021年中考数学分类专题突破专题19 三角形综合解析版Tag内容描述:
1、 专题专题 20 20 相似三角形问题相似三角形问题 一、比例一、比例 1成比例线段(简称比例线段):对于四条线段 a、b、c、d,如果其中两条线段的长度的比与另两条线段的 长度的比相等,即 d c b a (或 a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线段。如果作为 比例内项的是两条相同的线段,即 c b b a 或 a:b=b:c,那么线段 b 叫做线段 a,c 的比例中项。
2、三角形综合练习题三角形综合练习题 1 如图,ABC 中,ABAC,点 F 为 AC 的中点,D 为 BF 的延长线上一点,且BDCBAC,E 为 CD 的延长线上一点,且 ADAE,下列结论:AD 平分BDE;CD2DF;BFDF+DE;SABC 2S四边形AEDF其中结论正确的个数是( ) A1 个 B2 个 C3 个 D4 个 【解答】D 【解析】BDCBAC,A、B、C、D 四点共圆, A。
3、第 1 页 / 共 30 页 专题专题 19 19 解直角三角形问题解直角三角形问题 一、勾股定理和勾股定理逆定理一、勾股定理和勾股定理逆定理 1.勾股定理:如果直角三角形的两直角边长分别为 a,b,斜边长为 c,那么 a 2b2=c2。 2勾股定理逆定理:如果三角形三边长 a,b,c 满足 a 2b2=c2。 ,那么这个三角形是直角三角形。 二、直角三角形的判定及性质二、直角三角形的判定及性质。
4、第 1 页 / 共 13 页 专题专题 19 19 解直角三角形问题解直角三角形问题 一、勾股定理和勾股定理逆定理一、勾股定理和勾股定理逆定理 1.勾股定理:如果直角三角形的两直角边长分别为 a,b,斜边长为 c,那么 a 2b2=c2。 2勾股定理逆定理:如果三角形三边长 a,b,c 满足 a 2b2=c2。 ,那么这个三角形是直角三角形。 二、直角三角形的判定及性质二、直角三角形的判定及性质。
5、 专题专题 19 解直角三角形问题解直角三角形问题 一、勾股定理和勾股定理逆定理一、勾股定理和勾股定理逆定理 1.勾股定理:如果直角三角形的两直角边长分别为 a,b,斜边长为 c,那么 a2b2=c2。 2勾股定理逆定理:如果三角形三边长 a,b,c 满足 a2b2=c2。 ,那么这个三角形是直角三角形。 二、直角三角形的判定及性质二、直角三角形的判定及性质 1.直角三角形的判定 (1)有一个角。
6、专题专题 15 15 锐角三角函数锐角三角函数 一、选择题一、选择题 1. 下列式子错误 的是( ) A. cos40 sin50 B. tan15 tan75 1 C. sin225 cos225 1 D. sin60 2sin30 【答案】【答案】D 【解析】逐项分析如下: 选项 逐项分析 正误 A cos40 sin(90 40 )sin50 B tan15 tan75 1 tan75 。
7、专题专题 12 12 等边三角形的判定与性质等边三角形的判定与性质 一选择题 1关于等边三角形,下列说法中错误的是( ) A等边三角形中,各边都相等 B等腰三角形是特殊的等边三角形 C两个角都等于 60 的三角形是等边三角形 D有一个角为 60 的等腰三角形是等边三角形 解:A、等边三角形中,各边都相等,此选项正确; B、等边三角形是特殊的等腰三角形,此选项错误; C、两个角都等于 60 的三角形。
8、专题专题 11 11 等腰三角形的判定与性质等腰三角形的判定与性质 一选择题 1如图,在 ABC 中,ABAC,BAC108 ,若 AD、AE 三等分BAC,则图中等腰三角形有( ) A3 个 B4 个 C5 个 D6 个 解:ABAC,BAC108 , BC36 , ABC 是等腰三角形, BAC108 ,AD、AE 三等分BAC, BADDAEEAC36 , DACBAE72 , AEBAD。
9、专题专题 28 28 四边形中的三角形全等问题四边形中的三角形全等问题 1、如图 1,已知正方形 ABCD,E 是线段 BC 上一点,N 是线段 BC 延长线上一点,以 AE 为边在直线 BC 的上方作正方形 AEFG (1)连接 GD,求证 DGBE; (2)连接 FC,求 tanFCN 的值; (3)如图 2,将图 1 中正方形 ABCD 改为矩形 ABCD,AB3,BC8,E 是线段 BC。
10、专题专题 13 13 直角三角形的性质直角三角形的性质 一选择题 1下列条件中,不能确定一个直角三角形的条件是( ) A已知两条直角边 B已知两个锐角 C已知一边和一个锐角 D已知一条直角边和斜边 解:A、已知两条直角边,可以确定一个直角三角形; B、一直两个锐角,若两个锐角的和不等于 90 ,则不能确定一个直角三角形; C、已知一边和一个锐角,可以得到一直角,则能确定一个直角三角形; D、已知一。
11、专题专题 12 12 等边三角形的判定与性质等边三角形的判定与性质 一选择题 1关于等边三角形,下列说法中错误的是( ) A等边三角形中,各边都相等 B等腰三角形是特殊的等边三角形 C两个角都等于 60 的三角形是等边三角形 D有一个角为 60 的等腰三角形是等边三角形 解:A、等边三角形中,各边都相等,此选项正确; B、等边三角形是特殊的等腰三角形,此选项错误; C、两个角都等于 60 的三角形。
12、专题专题 11 11 等腰三角形的判定与性质等腰三角形的判定与性质 一选择题 1如图,在 ABC 中,ABAC,BAC108 ,若 AD、AE 三等分BAC,则图中等腰三角形有( ) A3 个 B4 个 C5 个 D6 个 解:ABAC,BAC108 , BC36 , ABC 是等腰三角形, BAC108 ,AD、AE 三等分BAC, BADDAEEAC36 , DACBAE72 , AEBAD。
13、专题专题 28 28 四边形中的三角形全等问题四边形中的三角形全等问题 1、如图 1,已知正方形 ABCD,E 是线段 BC 上一点,N 是线段 BC 延长线上一点,以 AE 为边在直线 BC 的上方作正方形 AEFG (1)连接 GD,求证 DGBE; (2)连接 FC,求 tanFCN 的值; (3)如图 2,将图 1 中正方形 ABCD 改为矩形 ABCD,AB3,BC8,E 是线段 BC。
14、专题专题 16 16 三角形中位线定理三角形中位线定理 一选择题 1在 ABC 中,D、E 分别是 AB、AC 的中点,则下列说法正确的是( ) ACEBC BDEAB CAEDC DAC 解:D,E 分别是 AB,AC 的中点, DE 是 ABC 的中位线, DEBC,故 B 选项说法错误; CE 与 BC 不一定相等,故 A 选项说法错误; BD 与 DE 不一定相等,B 选项说法错误; 由。
15、专题专题 13 13 直角三角形的性质直角三角形的性质 一选择题 1下列条件中,不能确定一个直角三角形的条件是( ) A已知两条直角边 B已知两个锐角 C已知一边和一个锐角 D已知一条直角边和斜边 解:A、已知两条直角边,可以确定一个直角三角形; B、一直两个锐角,若两个锐角的和不等于 90 ,则不能确定一个直角三角形; C、已知一边和一个锐角,可以得到一直角,则能确定一个直角三角形; D、已知一。
16、专题专题 14 14 全等三角形全等三角形 一、选择题一、选择题 1. 等腰三角形的两边长分别为 4 cm 和 8 cm,则它的周长为 ( ) A.16 cm B.17 cm C.20 cm D.16 cm 或 20 cm 【答案】【答案】C 2. 已知一个多边形的内角和是 1080 ,则这个多边形是( ) A五边形 B六边形 C七边形 D八边形 【答案】【答案】D 3. 如图,小明书上的三角。
17、专题专题 16 16 三角形中位线定理三角形中位线定理 一选择题 1在 ABC 中,D、E 分别是 AB、AC 的中点,则下列说法正确的是( ) ACEBC BDEAB CAEDC DAC 解:D,E 分别是 AB,AC 的中点, DE 是 ABC 的中位线, DEBC,故 B 选项说法错误; CE 与 BC 不一定相等,故 A 选项说法错误; BD 与 DE 不一定相等,B 选项说法错误; 由。
18、专题专题 14 14 全等三角形全等三角形 一、选择题一、选择题 1. 等腰三角形的两边长分别为 4 cm 和 8 cm,则它的周长为 ( ) A.16 cm B.17 cm C.20 cm D.16 cm 或 20 cm 【答案】【答案】C 2. 已知一个多边形的内角和是 1080 ,则这个多边形是( ) A五边形 B六边形 C七边形 D八边形 【答案】【答案】D 3. 如图,小明书上的三角。
19、专题专题 19 19 三角形综合三角形综合 1直线 MN 与直线 PQ 相交于 O,POM60 ,点 A 在射线 OP 上运动,点 B 在射线 OM 上运动 (1)如图 1,BAO70 ,已知 AE、BE 分别是BAO 和ABO 角的平分线,试求出AEB 的度数 (2) 如图 2, 已知 AB 不平行 CD, AD、 BC 分别是BAP 和ABM 的角平分线, 又 DE、 CE 分别是ADC 和。
20、专题专题 19 19 三角形综合三角形综合 1直线 MN 与直线 PQ 相交于 O,POM60 ,点 A 在射线 OP 上运动,点 B 在射线 OM 上运动 (1)如图 1,BAO70 ,已知 AE、BE 分别是BAO 和ABO 角的平分线,试求出AEB 的度数 (2) 如图 2, 已知 AB 不平行 CD, AD、 BC 分别是BAP 和ABM 的角平分线, 又 DE、 CE 分别是ADC 和。