2021届高三数学精准培优专练

例 1: 数列 n a中, 1 2a , m nmn aa a , 若 1 55 121 0 22 kkk aaa , 则k ( ) A2 B3 C4 D5 例 2:已知数列 n a, n b, n c满足 111 1abc, 1nnn caa , 1 2 n nn n b cc b , * ()

2021届高三数学精准培优专练Tag内容描述:

1、 例 1: 数列 n a中, 1 2a , m nmn aa a , 若 1 55 121 0 22 kkk aaa , 则k ( ) A2 B3 C4 D5 例 2:已知数列 n a, n b, n c满足 111 1abc, 1nnn caa , 1 2 n nn n b cc b , * ()nN (1)若数列 n b为等比数列,公比0q ,且 123 6bbb,求q的值及数列 。

2、 例 1:已知椭圆 22 22 :1(0) xy Cab ab 的离心率为 3 2 ,点A,B, 2 F分别为椭圆的右顶点,上顶点和右焦点, 且 2 3 1 2 ABF S (1)求椭圆C的方程; (2)E,F是椭圆上的两个动点,若直线AE与直线AF的斜率之和为1,证明,直线EF恒过定点 例 2:已知双曲线 2 2 :1(0) y C xb b 的左、右焦点分别为 1 F, 2 F,。

3、 例 1: 在四边形ABCD中, 已知2ABab,4BC ab,53CDab, 其中,a, b是不共线的非零向量,则四边形ABCD的形状是 例 2:如图,已知OAB,若点C满足 2ACCB ,,OCOAOB R, 则 11 ( ) A 1 3 B 2 3 C 2 9 D 9 2 例 3: 已知向量(2,sin )a,(cos , 1)b, 若ab, 则sin()cos() 44。

4、 例 1: 已知函数1 x yaa与log1 a yx a的图象有且仅有两个公共点, 则实数a的 取值范围是( ) A 1 1 e ae B1ae C 1 e eae Dae 例 2:若对任意0,1m,总存在唯一 1,1x 使得 2 0 x mx ea 成立,则实数a的取 值范围是( ) A1, e B 1 (1, e e C(0, e D 1 1, e e 一、选择题 1已知函数。

5、 例 1:在 6,9内任取一个实数m,设 2 ( )f xxmxm ,则函数( )f x的图象与x轴 有公共点的概率等于( ) A 2 15 B 7 15 C 3 5 D 11 15 (1)图形类几何概型 例 2-1:如图,六边形 ABCDEF 是一个正六边形,若在正六边形内任取一点,则该点恰好在 图中阴影部分的概率是( ) A 1 4 B 1 3 C 2 3 D 3 4 (2)线性。

6、 例 1:“欧几里得算法”是有记载的最古老的算法,可追溯至公元前300年前,如图所示的程 序框图的算法思路就是来源于“欧几里得算法”执行该程序框图(图中“aMODb”表示a除 以b的余数),若输入的, a b分别为2020,520,则输出的a( ) A14 B46 C40 D20 例 2:执行下面的程序框图,若输出的结果为15,则判断框中的条件是( ) 1、求输出结果 2、求判断条件。

7、 例 1:函数( )2 x f xex的零点所在的一个区间是( ) A( 2, 1) B( 1,0) C(0,1) D(1,2) 例 2:函数 2 2,0 26lg ,0 xx f x xx x 的零点的个数为( ) A0 B1 C2 D3 例 3: 已知函数1 x yaa与log1 a yx a的图象有且仅有两个公共点, 则实数a的 取值范围是( ) A 1 1 e ae B1。

8、 例 1:设变量x,y满足不等式组 5 25 1 0 xy xy xy y ,则45zxy的取值范围是( ) A 65 4, 3 B 4,26 C 4,23 D 4,28 例 2:已知实数x,y满足 34 4 2 xy y xy ,则 2 2 y z x 的最小值为 例 3:若实数x,y满足 1 20 x xy xy ,则 22 (2)zxy的最大值为( )。

9、 例 1:已知双曲线 22 22 :1 xy C ab (0a,0b)的焦距为4,其与抛物线 2 3 : 3 E yx 交于A,B两点,O为坐标原点,若OAB为正三角形,则C的离心率为( ) A 2 2 B 3 2 C 2 D 3 例 2:设椭圆 1 C的离心率为 5 13 ,焦点在x轴上且长轴长为26,若曲线 2 C上的点到椭圆 1 C 的两个焦点的距离的差的绝对值等于8,则曲线 2 。

10、 例 1:在 6,9内任取一个实数m,设 2 ( )f xxmxm ,则函数( )f x的图象与x轴 有公共点的概率等于( ) A 2 15 B 7 15 C 3 5 D 11 15 (1)图形类几何概型 例 2-1:如图,六边形 ABCDEF 是一个正六边形,若在正六边形内任取一点,则该点恰好在 图中阴影部分的概率是( ) A 1 4 B 1 3 C 2 3 D 3 4 (2)线性。

11、 例 1:若实数x,y满足约束条件 230 230 0 xy xy xy ,则23xy的取值范围是( ) A 1,15 B1,15 C 1,16 D1,16 例 2:设x,y满足约束条件 33 1 0 xy xy y ,则 y z x 的最大值为 例 3:已知实数x,y满足 10 220 220 xy xy xy ,若目标函数(0)zaxy a最大值为5,取到最。

12、 例 1:设函数 2 ( ) e f x xa ,若(1) 4 e f ,则a_ 例 2:曲线2lnyx在点(1,0)处的切线方程为_ 例 3:已知函数( )ln1 x f xaex (1)设2x是( )f x的极值点,求a,并求( )f x的单调区间; (2)证明:当 1 a e 时,( )0f x 1、导数的计算 2、导数的几何意。

13、 例 1:如图,已知OAB,若点C满足 2ACCB ,,OCOAOB R, 则 11 ( ) A 1 3 B 2 3 C 2 9 D 9 2 例 2:如图,在ABC中,ADDB,F在线段CD上,设AB a,AC b, AFxyab,则 14 xy 的最小值为_ 例 3:已知| 1OA ,| | 2OB uu u r ,|3OAOB,则向量OA,OB的夹角为( ) A。

14、 例 1:对任意实数x,若不等式4210 xx m 恒成立,则实数m的取值范围是( ) A(,2) B( 2,2) C(2, D2,2 例2:若不等式 2 21(1)xm x 对任意 1,1m 恒成立。求实数x的取值范围是 例 3:若不等式 2 3log0 a xx对任意 1 (0, ) 3 x恒成立,则实数a的取值范围为( ) A 1 ,1) 27 B( 1 ,1) 27 C 1 (。

15、 例 1:设椭圆 22 22 :1(0) xy Cab ab 的两个焦点分别为 1 F, 2 F,若在x轴上方的C上 存在两个不同的点M,N满足 1212 2 3 FMFFNF ,则椭圆C离心率的取值范围是 ( ) A 3 (0, 2 B 1 (,1) 2 C 3 (,1) 2 D 23 (,) 22 例 2: 阿基米德 (公元前287年公元前212年) 不仅是著名的物理学家, 也是著名。

16、 例 1:(1)函数 2 2 log (6)f xxx 的单调减区间是 ; (2)函数 1 1 1 y x 的单调递减区间为 例 2:函数12yxx的最大值为_ 例 3:(1)已知定义域为R的函数( )f x在区间(3,)上单调递增,且满足 (3)(3)fxfx,则下列不等式一定成立的是( ) A(1)(2)(6)fff B(6)(2)(1)fff C(6)(。

17、 例 1:已知椭圆 22 22 :1(0) xy Cab ab 的离心率为 1 2 ,且过点(2,3)P (1)求椭圆C的方程; (2)过点P作两条直线 1 l, 2 l与椭圆C分别交于M,N(M,N与P不重合) 两点, 若 1 l, 2 l的斜率之和为 1, 求证:直线MN过定点 例 2:在平面直角坐标系xOy中,F是抛物线 2 :2(0)C xpy p的焦点,M是抛物线C上位于第一象。

18、 例 1:已知公差不为0的等差数列 n a中, 1 2a ,且 2 1a , 4 1a , 8 1a 成等比数列 (1)求数列 n a的通项公式; (2)设数列 n b满足 3 n n b a ,求适合方程 1 22 31 45 31 nn bbb bb b 的正整数的值 例 2:已知数列 n a的前n项和为 n S, 1 1a , 1 21() nn aSn N,等差。

19、 例 1:设函数( )3xg x ,( )9xh x (1)解方程 33 ()log 2 ( )8l(og9( )xg xh x; (2)若 (1) ( ) ( ) g xa f x g xb 是R上的奇函数,且( ( )( )120f h xfk g x对任意 实数x恒成立,求实数k的取值范围 例 2:已知函数 1ln x f x x ,如果当1x 时,。

【2021届高三数学精准培优专】相关DOC文档
标签 > 2021届高三数学精准培优专练[编号:28887]