2020高考数学天津专用一轮考点规范练29解三角形含解析

第2课时简单的三角恒等变换 题型一三角函数式的化简 1化简:. 答案2cos 解析原式2cos. 2化简:. 答案cos2x 解析原式 cos2x. 3化简:2cos() 解原式 . 思维升华 (1)三角函数式的化简要遵循“三看”原则 一看角,二看名,三看式子结构与特征 (2)三角函数式的化简要注意

2020高考数学天津专用一轮考点规范练29解三角形含解析Tag内容描述:

1、第2课时简单的三角恒等变换题型一三角函数式的化简1化简:.答案2cos解析原式2cos.2化简:.答案cos2x解析原式cos2x.3化简:2cos()解原式.思维升华 (1)三角函数式的化简要遵循“三看”原则一看角,二看名,三看式子结构与特征(2)三角函数式的化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点题型二三角函数的求值命题点1给角求值与给值求值例1(1)(2018太原质检)2sin50sin10(1tan10).答案解析原式sin80cos102sin 50cos 10sin 10cos(6010)2sin(5010。

2、4.5简单的三角恒等变换最新考纲1.经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用.2.能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系.3.能运用上述公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆)1两角和与差的余弦、正弦、正切公式cos()coscossinsin(C()cos()coscossinsin(C()sin()sincoscossin(S()sin()sincoscossin(S()tan()(T()tan()(T()2二倍角公式sin22sincos;cos2cos2sin22cos2112sin2;tan2.概念方。

3、第1讲 任意角和弧度制及任意角的三角函数基础达标1已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为()A2B4C6D8解析:选C.设扇形的半径为r,弧长为l,则由扇形面积公式可得2lrr2r24,求得r1,lr4,所以所求扇形的周长为2rl6.2若角与的终边相同,则角的终边()A在x轴的正半轴上B在x轴的负半轴上C在y轴的负半轴上D在y轴的正半轴上解析:选A.由于角与的终边相同,所以k360(kZ),从而k360(kZ),此时角的终边在x轴正半轴上3已知角的终边过点P(8m,6sin 30),且cos ,则m的值为()ABCD解析:选B.因为r,所以cos ,所以m0,所以,因此m.4。

4、微专题五三角函数问题的多解探究解题技法三角函数是高中数学的重要内容,是每年高考的必考知识点,也是与其它知识交汇频率较高的知识点,它与数列、向量、方程、不等式、解析几何等知识紧密联系,历来倍受各级各类命题者的青睐题目已知3cosx4sinx5,求tanx的值解方法一构造方程由3cosx4sinx5两边平方,得9cos2x24sinxcosx16sin2x25.而2525(sin2xcos2x),所以上式可整理为9sin2x24sinxcosx16cos2x0.即(3sinx4cosx)20.所以3sinx4cosx0,解得tanx.方法二构造方程组由消去cosx,整理得(5sinx4)20.解得sinx,cosx.故tanx.方法三构造辅助角由3co。

5、4.2同角三角函数基本关系式及诱导公式考情考向分析考查利用同角三角函数的基本关系、诱导公式解决条件求值问题,常与三角恒等变换相结合起到化简三角函数关系的作用,强调利用三角公式进行恒等变形的技能以及基本的运算能力题型为填空题,低档难度1同角三角函数的基本关系(1)平方关系:sin2cos21.(2)商数关系:tan.2三角函数的诱导公式公式一二三四五六角2k(kZ)正弦sinsinsinsincoscos余弦coscoscoscossinsin正切tantantantan口诀函数名不变,符号看象限函数名改变,符号看象限概念方法微思考1使用平方关系求三角函数值时,怎样确定三角函。

6、第7讲 正弦定理与余弦定理基础达标1ABC的内角A、B、C的对边分别为a、b、c,若b2ac,c2a,则cos C()ABCD解析:选B.由题意得,b2ac2a2,ba,所以cos C,故选B.2已知a,b,c为ABC的三个内角A,B,C所对的边,若3bcos Cc(13cos B),则sin Csin A()A23B43C31D32解析:选C.由正弦定理得3sin Bcos Csin C3sin Ccos B,3sin(BC)sinC,因为ABC,所以BCA,所以3sin Asin C,所以sin Csin A31,选C.3在锐角ABC中,角A,B,C所对的边分别为a,b,c,若sin A,a3,SABC2,则b的值为()A6B3C2D2或3解析:选D.因为SABC2bcsin A,所以bc6,又因为sin A,所。

7、4.6正弦定理和余弦定理最新考纲通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题1正弦定理、余弦定理在ABC中,若角A,B,C所对的边分别是a,b,c,R为ABC外接圆半径,则定理正弦定理余弦定理内容(1)2R(2)a2b2c22bccosA;b2c2a22cacosB;c2a2b22abcosC变形(3)a2RsinA,b2RsinB,c2RsinC;(4)sinA,sinB,sinC;(5)abcsinAsinBsinC;(6)asinBbsinA,bsinCcsinB,asinCcsinA(7)cosA;cosB;cosC2在ABC中,已知a,b和A时,解的情况A为锐角A为钝角或直角图形关系式absinAbsinAb解的个数一解两。

8、4.5简单的三角恒等变换考情考向分析三角恒等变换是三角变换的工具,主要考查利用两角和与差的三角函数公式、二倍角公式进行三角函数的化简与求值,重在考查化简、求值,公式的正用、逆用以及变式运用,此处为C级要求,填空、解答题均有可能出现,中低档难度1两角和与差的余弦、正弦、正切公式cos()coscossinsin(C()cos()coscossinsin(C()sin()sincoscossin(S()sin()sincoscossin(S()tan()(T()tan()(T()2二倍角公式sin22sincos;cos2cos2sin22cos2112sin2;tan2.概念方法微思考1诱导公式与两角和差的三角函数公式有何关系?提示诱导公式可。

9、4.3三角函数的图象与性质最新考纲1.能画出ysin x,ycos x,ytan x的图象,了解三角函数的周期性.2.借助图象理解正弦函数、余弦函数在0,2,正切函数在上的性质(如单调性、最大值和最小值、图象与x轴交点等)1用五点法作正弦函数和余弦函数的简图(1)在正弦函数ysinx,x0,2的图象中,五个关键点是:(0,0),(,0),(2,0)(2)在余弦函数ycosx,x0,2的图象中,五个关键点是:(0,1),(,1),(2,1)2正弦、余弦、正切函数的图象与性质(下表中kZ)函数ysinxycosxytanx图象定义域RRxk值域1,11,1R周期性22奇偶性奇函数偶函数奇函数递增区间2k,2k递减区。

10、第四章 三角函数、解三角形考试内容等级要求三角函数的概念B同角三角函数的基本关系式B三角函数的诱导公式B正弦函数、余弦函数、正切函数的图象与性质B函数yAsin(x)的图象与性质A两角和(差)的正弦、余弦及正切C二倍角的正弦、余弦及正切B正弦定理、余弦定理及其应用B4.1任意角、弧度制及任意角的三角函数考情考向分析以理解任意角三角函数的概念、能进行弧度与角度的互化和扇形弧长、面积的计算为主,常与向量、三角恒等变换相结合,考查三角函数定义的应用及三角函数的化简与求值,考查分类讨论思想和数形结合思想的应用意识题型以填空题。

11、4.6正弦定理和余弦定理考情考向分析以利用正弦、余弦定理和三角形面积公式解三角形为主,常与三角函数的图象和性质、三角恒等变换、三角形中的几何计算交汇考查,加强数形结合思想的应用意识题型多样,中档难度1正弦定理、余弦定理在ABC中,若角A,B,C所对的边分别是a,b,c,R为ABC外接圆半径,则定理正弦定理余弦定理内容(1)2R(2)a2b2c22bccosA;b2c2a22cacosB;c2a2b22abcosC变形(3)a2RsinA,b2RsinB,c2RsinC;(4)sinA,sinB,sinC;(5)abcsinAsinBsinC;(6)asinBbsinA,bsinCcsinB,asinCcsinA(7)cosA;cosB;cosC2在ABC中,已知a,。

12、4.3三角函数的图象与性质考情考向分析以考查三角函数的图象和性质为主,题目涉及三角函数的图象及应用、图象的对称性、单调性、周期性、最值、零点考查三角函数性质时,常与三角恒等变换结合,加强数形结合思想、函数与方程思想的应用意识题型既有填空题,又有解答题,中档难度1用五点法作正弦函数和余弦函数的简图(1)在正弦函数ysinx,x0,2的图象中,五个关键点是:(0,0),(,0),(2,0)(2)在余弦函数ycosx,x0,2的图象中,五个关键点是:(0,1),(,1),(2,1)2正弦、余弦、正切函数的图象与性质(下表中kZ)函数ysinxycosxytanx图象定义域。

13、第4讲 简单的三角恒等变换基础达标1计算sin 15sin 30sin 75的值等于()AB C.D解析:选C.原式sin 15cos 152sin 15cos 15sin 30.2已知f(x)2tan x,则f的值为()A4BC4D8解析:选D.因为f(x)222,所以f8.3若sin,则cos等于()ABCD解析:选D.因为sin,cossin 2coscos 22sin21.4已知,均为锐角,(1tan )(1tan )2,则为()ABCD解析:选B.由(1tan )(1tan )2得tan tan 1tan tan ,所以tan()1.因为0,<。

14、高考专题突破二高考中的三角函数与解三角形问题题型一三角函数的图象和性质例1(2016山东)设f(x)2sin(x)sinx(sinxcosx)2.(1)求f(x)的单调递增区间;(2)把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到函数yg(x)的图象,求g的值解(1)由f(x)2sin(x)sinx(sinxcosx)22sin2x(12sinxcosx)(1cos2x)sin2x1sin2xcos2x12sin1.由2k2x2k(kZ),得kxk(kZ)所以f(x)的单调递增区间是(kZ).(2)由(1)知f(x)2sin1,把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y2sin1的图象,再把得到。

15、高考专题突破二高考中的三角函数与解三角形问题题型一三角函数的图象和性质例1设f(x)2sin(x)sinx(sinxcosx)2.(1)求f(x)的单调递增区间;(2)把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到函数yg(x)的图象,求g的值解(1)由f(x)2sin(x)sinx(sinxcosx)22sin2x(12sinxcosx)(1cos2x)sin2x1sin2xcos2x12sin1.由2k2x2k(kZ),得kxk(kZ)所以f(x)的单调递增区间是(kZ).(2)由(1)知f(x)2sin1,把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y2sin1的图象,再把得到的图象向左。

16、考点规范练 16 任意角、弧度制及任意角的三角函数一、基础巩固1.若 sin 0,则 是( )A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角2.若将钟表的分针拨慢 10 分钟,则分针转过的角的弧度数是( )A. B. C.- D.-3 6 3 63.若 tan 0,则 ( )A.sin 0 B.cos 0C.sin 20 D.cos 204.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角 (00,则实数 a 的取值范围是( )A.(-2,3 B.(-2,3) C.-2,3) D.-2,37.已知点 P 在角 的终边上,且 0,2 ),则 的值为( )(32,-12)A. B. C. D.56 23 116 538.已知点 A 的坐标为(4 ,1),将 OA 绕坐标原点 O 逆时针旋转 。

17、4.7解三角形的实际应用考情考向分析以利用正弦定理、余弦定理测量距离、高度、角度等实际问题为主,常与三角恒等变换、三角函数的性质结合考查,加强数学知识的应用性题型主要为填空题或解答题,中档难度测量中的有关几个术语术语名称术语意义图形表示仰角与俯角在目标视线与水平视线所成的角中,目标视线在水平视线上方的叫做仰角,目标视线在水平视线下方的叫做俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的夹角叫做方位角方位角的范围是0360方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)。

18、单元质检六 平面向量、解三角形、复数(时间:45 分钟 满分:100 分)一、选择题(本大题共 8 小题,每小题 6 分,共 48 分)1.设复数 =a+bi(a,bR),则 a+b=( )-21+A.1 B.2 C.-1 D.-22.已知 O 是ABC 所在平面内一点,D 为 BC 边的中点,且 2 =0,则有( )+A. =2 B. =C. =3 D.2 =3.若非零向量 a,b 满足 a(2a+b),且 a 与 b 的夹角为 ,则 =( )23 |A. B. C. D.212 14 324.已知菱形 ABCD 的边长为 a,ABC=60,则 = ( )A.- a2 B.- a2 C. a2 D. a232 34 34 325.一艘船以每小时 15 km 的速度向东航行 ,船在 A 处看到一个灯塔 M 在北偏东 60方向,行驶 4 h 后,船到。

19、考点规范练 21 三角恒等变换一、基础巩固1.已知 sin 2= ,则 cos2 =( )13 (-4)A.- B. C.- D.13 13 23 232.已知 2sin 2=1+cos 2,则 tan 2=( )A. B.-43 43C. 或 0 D.- 或 043 433.已知 f(x)=sin2x+sin xcos x,则 f(x)的最小正周期和一个单调递增区间分别为 ( )A.,0, B.2,-4,34C., D.2,-8,38 -4,44.(2018 全国 ,理 10)若 f(x)=cos x-sin x 在 -a,a上是减函数,则 a 的最大值是( )A. B. C. D.4 2 345.已知 为锐角,若 cos ,则 sin 的值为( )(+6)=45 (2+12)A. B. C. D.17250 17350 13350 2256.为了得到函数 y=sin 2x+cos 2x 的图象,可以将函数 y=c。

20、考点规范练 29 解三角形一、基础巩固1.ABC 的内角 A,B,C 的对边分别为 a,b,c.已知 a= ,b=2,A=60,则 c=( )3A. B.1 C. D.212 32.在ABC 中,B= ,BC 边上的高等于 BC,则 cos A= ( )4 13A. B. C.- D.-31010 1010 1010 310103.如图,两座相距 60 m 的建筑物 AB,CD 的高度分别为 20 m,50 m,BD 为水平面,则从建筑物 AB 的顶端 A 看建筑物 CD 的张角为( )A.30 B.45C.60 D.754.在ABC 中,A,B,C 所对的边分别为 a,b,c,若 bcos A+acos B=c2,a=b=2,则 ABC 的周长为( )A.7.5 B.7 C.6 D.55.在ABC 中,若三边长 a,b,c 满足 a3+b3=c3,则ABC 的形状为( )A.锐角三。

【2020高考数学天津专用一轮】相关DOC文档
标签 > 2020高考数学天津专用一轮考点规范练29解三角形含解析[编号:153606]