备战 2019 年中考数学压轴题之二次函数 专题专题 03 二次函数背景下的图形变换二次函数背景下的图形变换 【方法综述】【方法综述】 本类型主要研究二次函数背景下的图形变换。因为图形的平移、折叠和旋转是许多数学本类型主要研究二次函数背景下的图形变换。因为图形的平移、折叠和旋转是许多数学 问题进行
2019年中考数学函数考点全突破专题09Tag内容描述:
1、 备战 2019 年中考数学压轴题之二次函数 专题专题 03 二次函数背景下的图形变换二次函数背景下的图形变换 【方法综述】【方法综述】 本类型主要研究二次函数背景下的图形变换。因为图形的平移、折叠和旋转是许多数学本类型主要研究二次函数背景下的图形变换。因为图形的平移、折叠和旋转是许多数学 问题进行命题的基础,因此这类问题大量存在,并且和其它问题相交织。问题进行命题的基础,因此这类问题大量存在,并且和其它问题相交织。 二次函数背景下的图形变换主要分成两类:二次函数背景下的图形变换主要分成两类: 一个是二次函数图。
2、专题09 函数之解答题一解答题(共73小题)1(2019北京)如图,P是AB与弦AB所围成的图形的外部的一定点,C是AB上一动点,连接PC交弦AB于点D小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究下面是小腾的探究过程,请补充完整:(1)对于点C在AB上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8PC/cm3.443.303.072.702.252.252.642.83PD/cm3.442.692.001.360.961.132.002.83AD/cm0.000.781.542.303.014.005.116.00在PC,PD,AD的长度这三个量中,确定。
3、 备战备战 20192019 年年中考中考数学数学压轴题压轴题之之二次函数二次函数 专题专题 01 01 二次函数基础上的数学建模类二次函数基础上的数学建模类 【方法【方法综述综述】 此类问题以实际问题为背景,一般解答方法是先按照题目要求利用各种数学知识,构造此类问题以实际问题为背景,一般解答方法是先按照题目要求利用各种数学知识,构造 二次函数的数学模型,再通过将临界点带入讨论或者通过考察二次函数最值讨论解决实际问二次函数的数学模型,再通过将临界点带入讨论或者通过考察二次函数最值讨论解决实际问 题。题。 【典例示范】【。
4、 【方法综述】【方法综述】 本类型主要研究二次函数背景下的图形变换。因为图形的平移、折叠和旋转是许多数学本类型主要研究二次函数背景下的图形变换。因为图形的平移、折叠和旋转是许多数学 问题进行命题的基础,因此这类问题大量存在,并且和其它问题相交织。问题进行命题的基础,因此这类问题大量存在,并且和其它问题相交织。 二次函数背景下的图形变换主要分成两类:二次函数背景下的图形变换主要分成两类: 一个是二次函数图象的图形变换,此类问题在解决二次函数图象平移时可以采用顶点式一个是二次函数图象的图形变换,此类问题。
5、专题09 函数之解答题参考答案与试题解析一解答题(共73小题)1(2019北京)如图,P是AB与弦AB所围成的图形的外部的一定点,C是AB上一动点,连接PC交弦AB于点D小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究下面是小腾的探究过程,请补充完整:(1)对于点C在AB上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8PC/cm3.443.303.072.702.252.252.642.83PD/cm3.442.692.001.360.961.132.002.83AD/cm0.000.781.542.303.014.005.116.00在PC,PD,AD的长。
6、 备战备战 20192019 年年中考中考数学数学压轴题压轴题之之二次函数二次函数 专题专题 01 01 二次函数基础上的数学建模类二次函数基础上的数学建模类 【方法【方法综述综述】 此类问题以实际问题为背景,一般解答方法是先按照题目要求利用各种数学知识,构造此类问题以实际问题为背景,一般解答方法是先按照题目要求利用各种数学知识,构造 二次函数的数学模型,再通过将临界点带入讨论或者通过考察二次函数最值讨论解决实际问二次函数的数学模型,再通过将临界点带入讨论或者通过考察二次函数最值讨论解决实际问 题。题。 【典例示范】【。
7、 备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 02 二次函数与营销问题二次函数与营销问题 【方法综述】【方法综述】来源来源:学学.科科.网网 Z.X.X.K 此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量 取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根 据题意找出等。
8、专题专题 09 函数之解答题函数之解答题 参考答案与试题解析参考答案与试题解析 一解答题(共一解答题(共 67 小题)小题) 1 (2019上海) 在平面直角坐标系 xOy 中 (如图) , 已知一次函数的图象平行于直线 y= 1 2x, 且经过点 A (2, 3) ,与 x 轴交于点 B (1)求这个一次函数的解析式; (2)设点 C 在 y 轴上,当 ACBC 时,求点 C 的坐标 【答案】。
9、 备战备战 20192019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 09 09 二次函数背景下的动点问题探究二次函数背景下的动点问题探究 【方法综述】【方法综述】动点是常见的综合问题中的构成要件,通过点的运动命动点是常见的综合问题中的构成要件,通过点的运动命 题者可以构造各种问题情景。动点的呈现方式从动点个数往往有单动点或双动点,从运动呈现方式分为无题者可以构造各种问题情景。动点的呈现方式从动点个数往往有单动点或双动点,从运动呈现方式分为无 速度动点和有速度动点,从动点的引起的变化分为单个动。
10、 【方法综述】【方法综述】 此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量 取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根 据题意找出等量关系;其次考察函数的最值计算、判断,解答方法是通过二次函数特性找到据题意找出等量关系;其次考察函数的最值计算、判断,解答方法是通过二次函数特性找到。
11、 备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专专题题 09 二次函数背景下的动点问题探究二次函数背景下的动点问题探究 【方法综述】【方法综述】 动点是常见的综合问题中的构成要件,通过点的运动命题者可以构造各种问题情景。动动点是常见的综合问题中的构成要件,通过点的运动命题者可以构造各种问题情景。动 点的呈现方式从动点个数往往有单动点或双动点,从运动呈现方式分为无速度动点和有速度点的呈现方式从动点个数往往有单动点或双动点,从运动呈现方式分为无速度动点和有速度 动点,从动点的引起的变化。
12、2021 年中考一轮复习高频考点二次函数最值应用小专题突破训练年中考一轮复习高频考点二次函数最值应用小专题突破训练 1若一次函数 y(a+1)x+a 的图象过第一、三、四象限,则二次函数 yax2ax( ) A有最大值 B有最大值 C有最小值 D有最小值 2二次函数 y(x1)2+5,当 mxn 且 mn0 时,y 的最小值为 2m,最大值为 2n,则 m+n 的值为 ( ) A B2 C D 3。
13、专题四专题四 函数图像与性质的选、填问题函数图像与性质的选、填问题 类型 1 二次函数图像与字母的关系 1如图,抛物线 yax2bxc(a0)的对称轴为直线 x1,给出下列结论: b24ac;abc0;ac;4a2bc0,其中正确的个数有( ) A1 个 B2 个 C3 个 D4 个 2如图,抛物线 y11 2(x1) 21 与 y 2a(x4) 23 交于点 A(1,3),过点 A 作 x。
14、2021 年中考数学复习高频考点二次函数的应用专题突破训练年中考数学复习高频考点二次函数的应用专题突破训练 1函数 2 43ykxx与x轴有交点,则k的范围是( ) A 4 3 k B 4 3 k 且0k C 4 3 k D 4 3 k 且0k 2已知二次函数 2 812yxx与x轴的交点为A,C(点A在点C的左侧),与y轴的交点为B,顶 点部分为D,若点,P x y是四边形ABCD边上的点,。
15、专题六专题六 函数的实际应用问题函数的实际应用问题 类型 1 方案与最值问题 1江南农场收割小麦,已知 1 台大型收割机和 3 台小型收割机 1 小时可以收割小麦 1.4 公顷,2 台大型收 割机和 5 台小型收割机 1 小时可以收割小麦 2.5 公顷 (1)每台大型收割机和每台小型收割机 1 小时收割小麦各多少公顷? (2)大型收割机每小时费用为 300 元,小型收割机每小时费用为 200 元,。
16、专题五专题五 函数与几何综合运用函数与几何综合运用 类型 1 存在性问题 存在性问题一般有以下题型:是否存在垂直、平行位置关系;等腰、直角三角形、(特殊)平行四边 形形状关系;最大、最小值数量关系等 1如图,已知二次函数 y1x213 4 xc 的图象与 x 轴的一个交点为 A(4,0),与 y 轴的交点为 B,过 A、 B 的直线为 y2kxb. (1)求二次函数的解析式及点 B 的坐标; (2。
17、决胜2021中考数学压轴题全揭秘精品 专题09 反比例函数问题 【考点1】反比例函数的图象与性质 【例1】(2019湖北中考真题)反比例函数,下列说法不正确的是() A图象经过点(1,-3)B图象位于第二、四象限 C图象关于直线y=x对称Dy随x的增大而增大 【答案】D 【解析】 【分析】 通过反比例图象上的点的坐标特征,可对A选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项。
18、 1 一、考点分析:一、考点分析:二次函数的综合题中在第二三小问比较常考到相似三角形的问题,这类题 目出现在压轴题目中的概率比较高,难度系数也是偏大的,对于学生的计算和综合知识掌握要 求比较高。我们要利用我们现学的相似的知识在平面直角坐标系中研究。 二、解决此类题目的基本步骤与思路二、解决此类题目的基本步骤与思路 1.抓住相似的两个目标三角形,找出已知条件(例如已知边、已知角度、已知点坐标等) 2.找现成的等量关系,例如相等的角度从而确定下来对应关系 3. 运用分类讨论思想,几种不同相似的可能性逐一讨论 4. 充分。
19、 1 考纲要求 命题趋势 1理解二次函数的有关概念 2会用描点法画二次函数的图象,能从图象上认 识二次函数的性质 3会运用配方法确定二次函数图象的顶点、开口 方向和对称轴,并会求解二次函数的最值问题 4熟练掌握二次函数的上下左右平移 5熟练掌握二次函数解析式的求法. 二次函数是中考的重点内 容,题型主要有选择题、填空 题及解答题,而且常与方程、 不等式、几何知识等结合在一 起综合考查,且一般为压轴 题中考命题不仅考查二次函 数的概念、图象和性质等基础 知识,而且注重多个知识点的 综合考查以及对学生应用二次 函数解决实际问。
20、 1 考纲要求 命题趋势 1理解反比例函数的概念,能根据已知 条件确定反比例函数的解析式 2会画反比例函数图象,根据图象和解 析式探索并理解其基本性质 反比例函数是中考命题 热点之一,主要考查反比例函 数的图象、性质及解析式的确 定,也经常与一次函数、二次 函数及几何图形等知识综合 考查考查形式以选择题、填 空题为主. 知识梳理知识梳理 一、反比例函数的概念 一般地,形如_(k 是常数,k0)的函数叫做反比例函数 1反比例函数 yk x中的 k x是一个分式,所以自变量_,函数与 x 轴、y 轴无交点 2反比例函数解析式可以写成 xyk(k0),它。