10.1.3古典概型 同步练习含答案

3.3.1几何概型 知识点一 与长度有关的几何概型的问题 1已知函数f(x)x2x2,x5,5,那么满足f(x0)0,x05,5的x0取值的概率为() A B C D 答案A 解析由f(x0)0,即xx020,解得1x02所求概率为P 2在面积为S的ABC的边AB上任取一点P,则PBC的面积大于的概

10.1.3古典概型 同步练习含答案Tag内容描述:

1、3.3.1几何概型知识点一 与长度有关的几何概型的问题1已知函数f(x)x2x2,x5,5,那么满足f(x0)0,x05,5的x0取值的概率为()A B C D答案A解析由f(x0)0,即xx020,解得1x02所求概率为P2在面积为S的ABC的边AB上任取一点P,则PBC的面积大于的概率是()A B C D答案C解析如图所示,在边AB上任取一点P,因为ABC与PBC是等高的,所以事件“PBC的面积大于”等价于事件“|BP|AB|”,即PPBC的面积大于知识点二 与角度有关的几何概型问题3如图,在平面直角坐标系中,射线OT为60角的终边,在任意角集合中任取一个角,则该角终边落在xOT内的概率是()A BC D。

2、3.2.1古典概型(1)知识点一 基本事件及其计数问题1一个家庭有两个小孩,则所有可能的基本事件有()A(男,女),(男,男),(女,女)B(男,女),(女,男)C(男,男),(男,女),(女,男),(女,女)D(男,男),(女,女)答案C解析两个孩子出生有先后之分2做试验“从0,1,2这3个数字中,不放回地取两次,每次取一个,构成有序数对(x,y),x为第1次取到的数字,y为第2次取到的数字”(1)写出这个试验的基本事件;(2)求出这个试验的基本事件的总数;(3)写出“第1次取出的数字是2”这一事件包含的基本事件解(1)这个试验的基本事件为(0,1)(0,2),(1。

3、3.3几何概型一、填空题1从区间(15,25内的所有实数中随机取一个实数a,则这个实数满足17a20的概率是_答案解析由a(15,25,得P(17a20).2在长为10厘米的线段AB上任取一点G,用AG为半径作圆,则圆的面积介于36平方厘米到64平方厘米的概率是_答案解析以AG为半径作圆,面积介于36平方厘米到64平方厘米,则AG的长度应介于6厘米到8厘米之间所以,所求概率P(A).3当你到一个红绿灯路口时,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为45秒,那么你看到黄灯的概率是_答案解析由题意可知,在80秒内路口的红、黄、绿灯是随机出现的,可以认为是无限。

4、专题突破二古典概型概率计算时的几个关注点一、关注基本事件的有限性和等可能性例1袋中有大小相同的3个白球,2个红球,2个黄球,每个球有一个区别于其他球的编号,从中随机摸出一个球(1)把每个球的编号看作一个基本事件建立的概率模型是不是古典概型?(2)把球的颜色作为划分基本事件的依据,有多少个基本事件?以这些基本事件建立的概率模型是不是古典概型?思维切入将基本事件列出来,分析是否有限和等可能解(1)因为基本事件个数有限,而且每个基本事件发生的可能性相同,所以是古典概型(2)把球的颜色作为划分基本事件的依据,可得到“取。

5、2古典概型2.1古典概型的特征和概率计算公式基础过关1.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A. B. C. D.解析列树状图得:共有12种情况,取出的两张卡片上的数字之和为奇数的情况为8种,所以所求概率为.答案C2.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A. B. C. D.解析选取两支彩笔的方法有10种,含有红色彩笔的选法为4种,由古典概型公式,满足题意的概率p.故选C.答案C3.。

6、3.2古典概型1.从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_.解析从1,2,3,6中随机取2个数,共有6种不同的取法,其中所取2个数的乘积是6的有1,6和2,3,共2种,故所求概率是.答案2.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为_.解析从4只球中一次随机摸出2只球,有6种结果,其中这2只球颜色相同有1种结果,则颜色不同有5种结果,故所求概率为.答案3.在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是_.解析设。

7、1010. .1.31.3 古典概型古典概型 1下列是古典概型的是 A任意抛掷两枚骰子,所得点数之和作为样本点 B求任意的一个正整数平方的个位数字是 1 的概率,将取出的正整数作为样本点 C在甲乙丙丁 4 名志愿者中,任选一名志愿者去参加跳。

8、10.1.310.1.3 古典概型古典概型 基础达标 一选择题 1.下列是古典概型的是 A.任意抛掷两枚骰子,所得点数之和作为样本点 B.求任意的一个正整数平方的个位数字是 1 的概率, 将取出的正整数作为样本点时 C.从甲地到乙地共 n 。

9、10.1.3 古典概型古典概型 A 级基础过关练 1多选下列是古典概型的是 A从 6 名同学中,选出 4 人参加数学竞赛,每人被选中的可能性的大小 B同时掷两颗骰子,点数和为 7 的概率 C近三天中有一天降雨的概率 D10 个人站成一排,其。

标签 > 10.1.3古典概型 同步练习含答案[编号:94258]