第 5 课时 二次函数的图象与性质基础达标训练1. (2018 攀枝花)抛物线 yx 22x2 的顶点坐标为( )A. (1,1) B. (1,1) C.(1,3) D. (1,3)2. (2018 山西) 用配方法将二次函数 yx 28x9 化为 ya(x h) 2k 的形式为( )A. y(x4
1.3.1 正弦函数的图象与性质四同步练习含答案Tag内容描述:
1、第 5 课时 二次函数的图象与性质基础达标训练1. (2018 攀枝花)抛物线 yx 22x2 的顶点坐标为( )A. (1,1) B. (1,1) C.(1,3) D. (1,3)2. (2018 山西) 用配方法将二次函数 yx 28x9 化为 ya(x h) 2k 的形式为( )A. y(x4) 27 B. y( x4) 225 C.y(x4) 27 D. y(x4) 2253. (2018 上海) 下列对二次函数 yx 2x 的图象的描述,正确的是( )A. 开口向下 B. 对称轴是 y 轴C. 经过原点 D. 在对称轴右侧部分是下降的4. (2018 广安) 抛物线 y(x 2) 21 可以由抛物线 yx 2 平移而得到,下列平移正确的是( )A. 先向左平移 2 个单位长度,然后向上平移 1 个单。
2、第 2 课时 二次函数 yax 2(a0)的图象与性质知识要点分类练 夯实基础知识点 1 二次函数 yax 2(a0 Bx2Cx0 解析 因为 y5x 2 的二次项系数小于 0,所以抛物线的开口向下,y 有最大值4D 解析 二次函数 yax 2(a0) 的图象的顶点坐标为(0,0),其最大值为 y0.5C 6.B7D 解析 函数 y2 x2 的对称轴为直线 x0,在对称轴的左侧,y 随 x 的增大而增大,在对称轴的右侧,y 随 x 的增大而减小,故 D 选项正确8C9D 解析 开口向下的抛物线上,离对称轴越远的点,其纵坐标越小10解:(1)y(k2)xk 2 k4 是二次函数,k 2k42,k 2k60,(k3)(k2) 0,k 3 或 k2.函数。
3、第13课时 二次函数的图象与性质(时间:45分钟)1下列函数解析式中,一定为二次函数的是( C )Ay3x1 Byax 2bxcCs2t 22t 1 Dyx 21x2(2018岳阳中考)抛物线y3(x2) 25的顶点坐标是( C )A(2,5) B(2,5)来源:学科网ZXXKC(2,5) D(2,5)3(2016玉林中考)抛物线y x2,yx 2,yx 2的共同性质是:都是开口向上;都以点(0,0) 为顶点12; 都以y轴为对称轴;都关于x轴对称其中正确的个数有( B )A1个 B 2个 C3个 D4个4二次函数yax 2bx1(a0)的图象经过点(1 ,1),则 ab1的值是( D )A3 B 1 C2 D35(2015河池中考)将抛物线yx 2向右平移2个单位,再向上平移3个单。
4、12 第 1 课时 二次函数 yax 2(a0)的图象与性质 知识要点分类练 夯实基础知识点 1 二次函数 yax 2(a0)的图象1二次函数 y2x 2 的图象可能是( )图 1212画出函数 y x2 的图象32知识点 2 二次函数 yax 2(a0)的性质3函数 y3x 2 的图象的开口向_,顶点坐标是_,对称轴是_,当 x_时,y 随 x 的增大而减小,当 x_时,y 随 x 的增大而增大4二次函数 y8x 2 的图象的开口方向是( )A向上 B向下C向上或向下 D不能确定5关于函数 y5x 2 的图象与性质的叙述,错误的是( )A其图象的顶点是原点By 有最大值C当 x0 时,y 随 x 的增大而增大D当 x2 Bm2 Cm0)过 A(。
5、1.3.2三角函数的图象与性质(二) 基础过关1.设函数f(x)cos,则下列结论错误的是()A.f(x)的一个周期为2B.yf(x)的图象关于直线x对称C.f(x)的一个零点为xD.f(x)在单调递减解析函数f(x)cos的图象可由ycos x的图象向左平移个单位得到,如图可知,f(x)在上先递减后递增,D错误.答案D2.设M和m分别表示函数ycos x1的最大值和最小值,则Mm等于()A.2 B. C. D.2解析因为函数g(x)cos x的最大值和最小值分别为1和1,所以函数ycos x1的最大值和最小值分别为和.因此Mm2.答案A3.函数y2sin为偶函数,则绝对值最小的值为_.解析函数为偶函数,则k,kZ,k,kZ,。
6、1.3.2三角函数的图象与性质(一) 基础过关1.在同一平面直角坐标系内,关于函数ysin x,x0,2与ysin x,x2,4的图象描述正确的是()A.重合B.形状相同,位置不同C.关于y轴对称D.形状不同,位置不同解析根据正弦曲线的作法可知函数ysin x,x0,2与ysin x,x2,4的图象只是位置不同,形状相同.只有B正确.答案B2.函数ysin x,x的简图是()解析函数ysin x与ysin x的图象关于x轴对称,故选D.答案D3.方程sin x的根的个数是_.解析在同一坐标系内画出y和ysin x的图象如图所示:根据图象可知方程有7个根.答案74.函数y的定义域是_.解析由2cos x10,得cos 。
7、1.3.2三角函数的图象与性质(三) 基础过关1.下列函数中,既是以为周期的奇函数,又是(0,)上的增函数的是()A.ytan x B.ycos xC.ytan D.y|sin x|解析由于ytan x与ytan 是奇函数,但是只有ytan x的周期为,ycos x与y|sin x|是偶函数.答案A2.下列不等式中正确的是()A.tantan B.tan 1tan 2C.0.而0,tan 2tan 2,B正确;对于C,tan 40,而tan 30,C错;对于D,tan 281tan(180101)tan 101。
8、1.3.2余弦函数、正切函数的图象与性质(一)基础过关1若ysinx是减函数,ycosx是增函数,那么角x在()A第一象限 B第二象限C第三象限 D第四象限答案C2函数y2cosx的单调递增区间是()A2k,2k2 (kZ)Bk,k2 (kZ)C. (kZ)D2k,2k (kZ)答案D解析令ucosx,则y2u,y2u在u(,)上是增函数,y2cosx的增区间,即ucosx的增区间,即ucosx的减区间2k,2k (kZ)3下列函数中,周期为,且在上为减函数的是()Aysin BycosCysin Dycos答案A解析因为函数周期为,所以排除C、D.又因为ycossin2x在上为增函数,故B不符合故选A.4.设函数f(x)cos,则下列结论错误的是()Af(x)。
9、13.2余弦函数、正切函数的图象与性质(二)基础过关1函数ytan,xR的一个对称中心是()A(0,0) B.C. D(,0)答案C2函数ytan的定义域是()A.B.C.D.答案D解析由ytantan,xk,kZ,从而得xk,kZ.3在函数ycos|2x|,y|cosx|,ycos(2x),ytan(2x)中,最小正周期为的所有函数为()A BC D答案C解析ycos|2x|cos2x,T.由图象知,函数的周期T.T.T.综上可知,最小正周期为的所有函数为.4下列各式中正确的是()Atan735tan800 Btan1tan2Ctantan Dtan&l。
10、1.3三角函数的图象与性质1.3.1正弦函数的图象与性质(一)一、选择题1.在同一坐标系中,函数ysin x,x0,2与ysin x,x2,4的图象()A.重合 B.形状相同,位置不同C.关于y轴对称 D.形状不同,位置相同答案B解析由正弦曲线,知B正确.2.用五点法画ysin x,x0,2的图象时,关键点不包括()A. B. C.(,0) D.(2,0)答案A解析易知不是关键点.3.方程sin x的根的个数是()A.7 B.8 C.9 D.10答案A解析在同一坐标系内画出y和ysin x的图象如图所示.根据图象可知方程有7个根.4.对于正弦函数的图象,有以下四个说法:关于原点对称;关于x轴对称;关于y轴对称;有。
11、1.3.1正弦函数的图象与性质(三)学习目标1.掌握ysin x的最大值与最小值,并会求简单三角函数的值域和最值.2.掌握ysin x的单调性,并能利用单调性比较大小.3.会求函数yAsin(x)的单调区间.知识点一正弦函数的定义域、值域观察下图中的正弦曲线.正弦曲线:可得如下性质:由正弦曲线很容易看出正弦函数的定义域是实数集R,值域是1,1.对于正弦函数ysin x,xR有:当且仅当x2k,kZ时,取得最大值1;当且仅当x2k,kZ时,取得最小值1.知识点二正弦函数的单调性正弦函数ysin x的图象与性质解析式ysin x图象值域1,1单调性在,kZ上递增,在,kZ上递减最。
12、1.3.1正弦函数的图象与性质(二)一、选择题1.下列函数中,周期为2的是()A.ysin B.ysin 2xC.y D.y|sin x|答案C解析画出y的图象(图略),易知其周期为2.2.下列函数中,不是周期函数的是()A.ysin x1 B.ysin2xC.y|sin x| D.ysin |x|答案D解析画出ysin |x|的图象(图略),易知D的图象不具有周期性.3.函数f(x)是()A.奇函数 B.偶函数C.既是奇函数又是偶函数 D.非奇非偶函数答案B解析函数f(x)的定义域为(,0)(0,),关于原点对称,且f(x)f(x),故f(x)为偶函数.4.函数f(x)sin的最小正周期为,其中0,则等于()A.5 B.10 C.15 D.20答案B5.已知aR,函数f(x。
13、1.3.1正弦函数的图象与性质(四)一、选择题1.函数y2sin在一个周期内的三个“零点”的横坐标可能是()A., B.,C., D.,答案B解析令xk(kZ),得x2k,分别令k0,1,2,得x,.故选B.2.已知简谐运动f(x)2sin的图象经过点(0,1),则该简谐运动的最小正周期T和初相分别为()A.T6, B.T6,C.T6, D.T6,答案A解析T6,将点(0,1)代入得sin .,.3.将函数y2sin的图象向右平移个周期后,所得图象对应的函数为()A.y2sin B.y2sinC.y2sin D.y2sin答案D解析函数y2sin的周期为,将函数y2sin的图象向右平移个周期即个单位长度,所得函数为y2sin2sin,故选D.4.为了。
14、1.3三角函数的图象与性质1.3.1正弦函数的图象与性质(一)学习目标1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线的步骤和方法,能用“五点法”作出简单的正弦曲线.知识点一几何法作正弦曲线(1)正弦函数ysin x,xR的图象叫做正弦曲线.(2)几何法作正弦函数ysin x,x0,2的操作流程.作直角坐标系,并以直角坐标系x轴上任一点为圆心(一般取y轴左侧)画单位圆,如图所示.从单位圆与x轴的交点起,把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x轴的垂线,可以得到对应于0,2的角的正弦线.找横坐。
15、1.3.1正弦函数的图象与性质(三)学习目标1.掌握ysin x的最大值与最小值,并会求简单三角函数的值域和最值.2.掌握ysin x的单调性,并能利用单调性比较大小.3.会求函数yAsin(x)的单调区间.知识点一正弦函数的定义域、值域观察下图中的正弦曲线.正弦曲线:可得如下性质:由正弦曲线很容易看出正弦函数的定义域是实数集R,值域是1,1.对于正弦函数ysin x,xR有:当且仅当x2k,kZ时,取得最大值1;当且仅当x2k,kZ时,取得最小值1.知识点二正弦函数的单调性正弦函数ysin x的图象与性质解析式ysin x图象值域1,1单调性在,kZ上递增,在,kZ上递减最。
16、1.3.1正弦函数的图象与性质(二)学习目标1.了解周期函数、周期、最小正周期的定义.2.会求函数yAsin(x)的周期.3.掌握函数ysin x的奇偶性,会判断简单三角函数的奇偶性.知识点一函数的周期性(1)对于函数f(x),如果存在一个非零常数T,使得定义域内的每一个x值,都满足f(xT)f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期.(2)对于一个周期函数f(x),如果在它的所有周期中存在一个最小的正数,那么这个最小正数就叫做它的最小正周期.知识点二正弦函数的周期性由sin(x2k)sin x(kZ)知,ysin x是周期函数,2k(kZ且k0)是它的周期。
17、1.3.1正弦函数的图象与性质(三)基础过关1若,都是第一象限的角,且sin BsinsinCsinsin Dsin与sin的大小不定答案D2函数ysin2xsinx1的值域为()A1,1 B.C. D.答案C解析ysin2xsinx12,当sinx时,ymin,当sinx1时,ymax1.3函数y|sinx|的一个单调增区间是()A. B.C. D.答案C解析由y|sinx|图象易得函数单调递增区间k,k,kZ,当k1时,得为y|sinx|的单调递增区间4下列关系式中正确的是()Asin11cos10sin168Bsin168sin11cos10C。
18、13三角函数的图象与性质13.1正弦函数的图象与性质(一)基础过关1函数ysinx (xR)图象的一条对称轴是()Ax轴 By轴C直线yx D直线x答案D2在同一坐标系中,函数ysinx,x0,2与ysinx,x2,4的图象()A重合 B形状相同,位置不同C关于y轴对称D形状不同,位置相同答案B3函数ysinx,x的简图是()答案D4方程sinx的根的个数是()A7 B8 C9 D10答案A解析在同一坐标系内画出y和ysinx的图象如图所示:根据图象可知方程有7个根5已知函数ysinx的定义域为a,b,值域为1,1,则ba的值不可能是()A. B C. D2答案A6函数f(x)sinx|sinx|的值域是_答案0,2解析。
19、1.3.1正弦函数的图象与性质(二)基础过关1函数f(x)sin,xR的最小正周期为()A. BC2 D4答案D2函数f(x)sin的最小正周期为,其中0,则等于()A5 B10C15 D20答案B3下列函数中,周期为的偶函数是()Aysinx Bysin2xCy|sin2x| Dy答案D解析y|sinx|符合题意4f(x)2sin(x)m,对任意实数t都有f(t)f(t),且f()3,则实数m的值等于()A1 B5C5或1 D5或1答案C解析由f(t)f(t)知,函数f(x)关于x对称,故sin()1或sin()1.当sin()1时,由f()3知2m3,得。
20、1.3.1正弦函数的图象与性质(四)基础过关1函数y2sin在一个周期内的三个“零点”的横坐标可能是()A, B,C, D,答案B2下列表示函数ysin在区间上的简图正确的是()答案A解析将ysinx的图象上所有点的横坐标缩短为原来的倍,再将所有点向右平移个单位长度即得ysin的图象,依据此变换过程可得到A中图象是正确的也可以分别令2x0,2得到五个关键点,描点连线即得函数ysin的图象3已知简谐运动f(x)2sin的图象经过点(0,1),则该简谐运动的最小正周期T和初相分别为()AT6, BT6,CT6, DT6,答案A解析T6,代入(0,1)点得sin.又0,|)是以2为周期的周期函。