1.2余弦定理第2课时余弦定理的应用课时对点练含答案

6 6. .4.34.3 余弦定理余弦定理正弦定理正弦定理 第第 1 1 课时课时 余弦定理余弦定理 1在ABC 中,角 A,B,C 的对边分别为 a,b,c,已知 a 19,b2,c5,则 A 的大小为 A30 B60 C45 D90 答,第第 4 4 课时课时 余弦定理正弦定理应用举例余弦定理正

1.2余弦定理第2课时余弦定理的应用课时对点练含答案Tag内容描述:

1、6 6. .4.34.3 余弦定理余弦定理正弦定理正弦定理 第第 1 1 课时课时 余弦定理余弦定理 1在ABC 中,角 A,B,C 的对边分别为 a,b,c,已知 a 19,b2,c5,则 A 的大小为 A30 B60 C45 D90 答。

2、第第 4 4 课时课时 余弦定理正弦定理应用举例余弦定理正弦定理应用举例 1已知海上 A,B 两个小岛相距 10 海里,C 岛临近陆地,若从 A 岛望 C 岛和 B 岛成 60 的视角,从 B 岛望 C 岛和 A 岛成 75 的视角,则 B。

3、第第 5 5 课时课时 余弦定理余弦定理正弦定理的应用正弦定理的应用 1在ABC 中,角 A,B,C 所对的边分别是 a,b,c,若 A30 ,ab2,则ABC 的面积为 A1 B. 3 C2 D2 3 答案 B 解析 在ABC 中,A30。

4、第2课时余弦定理的变形及应用学习目标1.熟练掌握余弦定理及其变形形式.2.会用余弦定理解三角形.3.能利用正弦定理、余弦定理解决有关三角形的恒等式化简、证明及形状判断等问题知识点余弦定理及其推论1a2b2c22bccos A,b2 c2a22cacos_B,c2a2b22abcos_C.2cos A;cos B;cos C.3在ABC中,c2a2b2C为直角;c2a2b2C为钝角;c20时,三角形ABC为锐角三角形()3在ABC中,恒有a2(bc)22bc(1cos A)()4ABC中,若c2a2b20,则角C为钝角()题型一余弦定理的变形及应用例1在ABC中,若(ac)(ac)b(bc),则A_.答案120解析由条件得a2。

5、12余弦定理第1课时余弦定理及其直接应用一、选择题1在ABC中,a2c2b2ab,则C等于()A60 B45或135C120 D30答案A解析cos C,且C(0,180),C60.2在ABC中,已知B120,a3,c5,则b等于()A4 B. C7 D5答案C解析b2a2c22accos B3252235cos 12049,b7.3边长为5,7,8的三角形的最大角与最小角的和是()A90 B120 C135 D150答案B解析设中间角为,则为锐角,cos ,60,18060120为所求4已知ABC满足。

6、1.2余弦定理第1课时余弦定理一、选择题1在ABC中,已知B120,a3,c5,则b等于()A4 B. C7 D5答案C解析b2a2c22accos B3252235cos 12049,b7.2在ABC中,内角A,B,C的对边分别为a,b,c,若abc357,则C的大小是()A. B. C. D.答案B解析由abc357,可设a3k,b5k,c7k,k0,由余弦定理得cos C,又因为0C,所以C.3边长为5,7,8的三角形的最大角与最小角的和是()A90 B120 C135 D150答案B解析设中间角为,则为锐角,cos ,所以60,则18060120为所求的和4在ABC。

7、第2课时余弦定理的变形及应用一、选择题1若三条线段的长分别为5,6,7,则用这三条线段()A能组成直角三角形B能组成锐角三角形C能组成钝角三角形D不能组成三角形答案B解析因为三角形最大边对应的角的余弦值cos 0,所以能组成锐角三角形2在ABC中,若c2,b2a,且cos C,则a等于()A2 B. C1 D.答案C解析由cos C,得a1.3在ABC中,角A,B,C所对的边的长分别为a,b,c,若asin Absin Bcsin C,则ABC的形状是()A锐角三角形 B直角三角形C钝角三角形 D不确定答案C解析根据正弦定理可得a2b2c2.由余弦定理得cos C0,故C是钝角,ABC是钝角三角形4在ABC中。

标签 > 1.2余弦定理第2课时余弦定理的应用课时对点练含答案[编号:118755]