西师大版六年级上册《第四单元 比和按比例分配》教学设计+教学反思+课堂练习+测试题(含答案)

上传人:可** 文档编号:81450 上传时间:2019-08-31 格式:DOCX 页数:98 大小:934.23KB
下载 相关 举报
西师大版六年级上册《第四单元 比和按比例分配》教学设计+教学反思+课堂练习+测试题(含答案)_第1页
第1页 / 共98页
西师大版六年级上册《第四单元 比和按比例分配》教学设计+教学反思+课堂练习+测试题(含答案)_第2页
第2页 / 共98页
西师大版六年级上册《第四单元 比和按比例分配》教学设计+教学反思+课堂练习+测试题(含答案)_第3页
第3页 / 共98页
西师大版六年级上册《第四单元 比和按比例分配》教学设计+教学反思+课堂练习+测试题(含答案)_第4页
第4页 / 共98页
西师大版六年级上册《第四单元 比和按比例分配》教学设计+教学反思+课堂练习+测试题(含答案)_第5页
第5页 / 共98页
点击查看更多>>
资源描述

1、第四单元 比和按比例分配 单元备课方案 教学内容:本单元的教学内容共包括以下几部分:比的意义和性质;问题解决;整理与复习;综合与实践等内容。本单元一共安排了 2 部分内容,第一部分是比的意义和性质,在这一部分中教材一共安排了 3 道例题。例 1 是认识比,先通过除法引入比,即比表示两个量之间的关系,然后介绍比的写法和读法、比的意义以及比各部分名称。教材选用两个量(张丽用的时间和李兰用的时间)作教学素材有利于学生更好理解这两个量的关系。介绍了比的多种写法,使学生对比的认识更加全面。例 2 由分数和比的比较引入教学,有利于学生启动分数的相关经验来理解比的知识,上排的分数既可以看作分数,也可以看作比

2、。用分数的基本性质促进学生对比的基本性质的理解,用最简分数的概念理解最简比的概念。例 3 化简比包括化简整数比和分数比,都是应用比的基本性质。强调比的结果应该是最简整数比。第二部分是问题解决,在这一部分当中,教材一共安排了 3 道例题。例 1 通过两个小孩的对话,强调“按两人拿出钱数的比”分配合理,突出按比例分配的应用价值。呈现多种解决问题的方法。一是用方程解(实质上是归一法);另一种是按比例分配。对照按比例分配的操作过程,归纳总结按比例分配的意义。例 2 和上一题不同的是,题中的比是一个连比。在学生解题的基础上,归纳总结按比例分配的解题方法。例 3 既涉及按比例分配的知识,还涉及分数的知识,

3、综合性比较强。突出“按所行的路程的比”分配。在书写上又有所变化,不再先求总份数,而是用分母相加的形式体现总份数。利用算法多样化,沟通归一问题与按比例分配的联系,帮助学生形成整体认知结构。 教材分析:比和按比例分配是在学生已经掌握了分数的意义。分数的基本性质、分数与除法的关系和分数乘除法等的基础上进行学习的。由于它和前面学习的很多知识具有密切的联系,把这一单元安排在分数除法之后进行教学,既加强了知识的内在联系,又为以后学习比例等知识打下基础。教材编写的主要特点:1.选择贴近现实生活的教学内容。比和按比例分配与现实生活密切相关。本单元注重选取和实际生活相联系的实例来呈现教学内容,凸现比和按比例分配

4、在现实生活中的应用价值。例如,第 52 页课堂活动第 2 题中提到的学校课桌椅功能尺寸;教材第 52 页练习十四第 2 题第(4)小题三峡库区由于水运量的增加,所需拖船的只数的情况;第 52 页练习十四的第 3 题,我国高考的人数情况;第 53 页第 7 题,动物跑动的快慢与小腿骨和大腿骨长度的比有关等。学生在学习这些内容的同时,不但掌握了比的有关知识,也感受到比和按比例分配在人类社会中的重要作用。2.注意沟通知识间的内在联系。比、分数、除法三者之间有其不可分割的关系。教科书关注知识的内在联系,引导学生从比的意义进行构建。因为学生已经学习了分数与除法的关系,比的意义又是建立在除法之上的,可见它

5、们之间有着千丝万缕的联系。所以教科书在第 50 页就安排了“议一议”,让学生探究,构建三者之间的关系。又在第 52 页安排了“议一议”,讨论三者性质之间的联系,找出它们的相同与不同之处。这样,不但有利于学生构建知识,更有利于培养学生的迁移能力和探索能力。3.注意突出学生的主体地位。教科书多次引用“试一试”、“议一议”、观察、比较等手段,引导学生主动参与学习活动。通过探索与交流的方式,让学生经历比、分数、除法之间联系的探究过程,经历比的基本性质的探究过程,经历什么是按比例分配的探究过程让学生经历观察、分析、推导、归纳、总结的每个环节,突出学生的主体地位。4.注意和其他学科的整合。本单元选取的素材

6、比较广泛,涉及自然、社会、品德、生物、地理等学科。例如,第52 页的第 2 题,第 53 页的第 7 题等。这样编排,能让学生体会到数学的应用价值,同时还拓宽了学生的视野。有的内容和现实生活联系紧密(如第 58 页第 11 题),还能让学生受到思想品德的教育。 教学目标:知识目标: 1.理解比的意义,了解比、分数、除法三者之间的关系,掌握比的基本性质,并会化简比和求比值。2.结合具体情境,理解什么是按比例分配,并能解决有关的实际问题。能力目标:3.在探究比的基本性质以及在用按比例分配解决问题的过程中,培养学生的概括归纳、解决问题的能力。情感目标:4.通过学习体会新旧知识间的内在联系与区别。 重

7、点难点:理解并掌握比的意义、比的读法和写法、认识各部分名称并能求出比值。理解并掌握比的基本性质和化简比的方法。掌握解按比例分配问题的方法。重点运用按比例分配的知识进行材料预算。理解比、分数和除法的关系。理解化简比和求比值的区别与联系。会解较难的按比例分配问题。难点学会修建道路等的方案设计。 教学建议小学数学新课程标准提出:数学课程生活化,数学教学要从学生的生活经验和已有的知识出发,以学生从体验的和容易理解的现实问题为素材,并注意与学生已经了解和学生过的教学知识相联系,让学生在熟悉的事物和具体情境中,通过自主活动理解教学知识,建构数学知识结构。让学生亲历数学知识的形成,学习数学唯一正确的方法是实

8、行“再创造”,探究性学习强调学生通过自己参与类似于科学研究的学习活动,获得亲身体验,就是“再创造”。必须让学生看到数学知识形成和发展过程,亲身体验如何“做数学”。1.注意体现数学知识之间的内在联系。比、分数、除法之间有着密切的联系。教学时,要充分利用以往的知识经验,沟通三者之间的联系,完成比的教学。在比的应用方面要注意引导学生将按比例分配问题转化成“求一个数的几分之几是多少”的问题,学会解答方法。2.提供丰富的现实素材,让学生理解比的意义。“比”包含了同类量比较和非同类量比较两种,教师要借助教材问题情境中提供的素材,使学生理解同类量比较中的含义。另外,还应借助练习题中的素材,帮助学生理解非同类

9、量比较中的比的含义,从而使学生全面理解比的含义。3.注意培养学生用方程解决问题的意识。按比例分配问题是学生学习的一个难点,教学时要引导学生把按比例分配问题转化成“求一个数的几分之几是多少”的问题,同时也要鼓励学生用方程解决问题。列方程解问题的最大优势是未知数与已知数同样参与列式,将逆向思维转化为顺向思维,学生容易理解。让学生体会方程的优越性,逐渐形成用方程解决问题的意识。 课时安排:课题 课时比的意义和性质 2问题解决 3整理和复习 1总计 6 课时备课方案第 1 课时 比的意义 教学内容:教科书第 50 页,比的意义以及读法和写法。 教学提示:教材在安排比的意义的学习时,分为三个阶段:比的意

10、义、比的各部分名称、比与分数及除法的关系。比的意义教材是从日常生活中的相除关系的例子中引出的,通过对具体例子的讨论,明确了比的概念是建立在除法的意义基础之上的,揭示了比与除法之间的本质联系,是一种以“倍比”为基础的比较关系。教材安排了一道例题例 1,例 1 创设了张丽和李兰从家到学校的路程和时间的情境,由除法引入,揭示比表示两个量之间的关系,然后教学比的写法和读法、比的意义以及比各部分名称。教材选用两个量(张丽用的时间和李兰用的时间)作教学素材有利于学生更好理解这两个量的关系。教材介绍了比的多种写法,使学生对比的认识更加全面。教材中的“试一试”环节,让学生写出它们时间的比以及路程的比,及时巩固

11、了新知,教材中的“议一议”环节,讨论了比的后项不能是 0 的问题,同时通过讨论揭示了分数、比与除法之间的关系。 教学目标:1.知识与技能:在具体情境中理解比的意义,知道比的各部分名称,掌握比的读、写方法,会求比值。2.过程能力与方法:通过学生的小组合作与交流,让学生知道比与除法、分数间的联系与区别,从而向学生渗透对立统一的辩证唯物主义观点。 3.情感态度与价值观:培养学生的合作意识,让学生在小组活动中初步理解比与分数,比与除法之间的关系。 重点难点:教学重点:理解比的意义教学难点:比、分数、除法的联系。 教学准备: 教具准备:多媒体课件。 学具准备:练习本等。 教学过程:(一)新课导入出示例

12、1 图表: 教师引导学生观察表格后提问:你从表格中了解到什么信息?每两个数量之间有怎样的关系?你都会用哪些方法表示它们之间的关系? 学生可能找到每两个数量之间各种各样的关系,针对学生所答,及时作出引导评价。 教师引导:我们会用加法表示两个量之间的合并关系。会用减法表示两个量之间的相差关系,也会用分数或除法表示两个量之间的倍数关系。今天,我们再来学习一种新的表示两个量间数量关系的方法。教师揭示课题比的意义。【设计意图:从生活中常见的例子(从家到学校所以的时间和路程)导入新课,能发现比在生活中的应用,从中培养学生在生活中发现数学问题、提出问题的意识。】(二)探究新知1.初步认识比及比的读、写方法。

13、 教师:请同学们看例 1 中的表格,根据表格中信息写出用分数或除法表示两个量之间的倍数关系。学生用分数或除法表示表中两个量之间倍数关系。预设:2405;2004;240200;54。教师给予鼓励。教师根据学生写出的算式,揭示:像这样两个数相除又叫做两个数的比。 教师举例:比如张丽用的时间是李兰的几倍? 54= ,我们就说,张丽和李兰所用45时间的比是“5 比 4”,可以写成 5:4 或 ,读作:5 比 4。4教师:比是除法的另一种表达形式,它也表示两个数量之间的倍关系,只是形式不同。然后让学生带着下面的问题自读教科书例 1 内容。 问题:比的各部分名称是什么? 你都知道了关于比的哪些知识? 5

14、 比 4 是哪个数量与哪个数量的比?那 4 比 5 呢? 学生自学后根据问题谈自己的收获。教师给予鼓励性评价。 教学例 1 之后的“试一试”。 提问:你能用刚才所学的知识解决“试一试”中的问题吗? 组织学生独立思考,解决问题,然后集体订正,评价。 教师追问:为什么张丽与李兰所用时间的比中 5 是比的前项,而在李兰与张丽所用时间的比中 5 又是比的后项呢? 学生回答后,教师指出:两个数的比是有顺序的。因此,在用比表示两个数量的关系时,一定要按照叙述的顺序,正确表达是一个数量与另一个数量的比,不能颠倒两个数的位置。教师提问:5 分钟、4 分钟都表示什么?(时间) 教师小结:5 分钟、4 分钟都表示

15、时间,它们是同一种量,我们就说这两个数量的比是同类量的比。 观察“试一试”中的最后一个问题。 教师:求的是什么?谁和谁进行比较?路程和时间谁除以谁? 教师:我们也可以用比来表示路程和时间的关系。路程除以时间可以说成什么?(可以说成路程和时间的比)路程和时间是同一类量吗?(不是)不同类量比的结果是什么?(产生一个新的量:速度)师生共同小结:两个数量的比可以是同类量的比,也可以是不同类量的比。【设计意图:在出示例题后,组织学生围绕“比”的问题去研究、探索、讨论、概括、总结,实现了自主学习,这样,尊重学生的主体地位,培养创新精神。】2.学习求比值。 教师:54 表示什么?45 表示什么?它们的结果是

16、什么? 教师揭示:比的前项除以比的后项得到的商就是比值。教师:你知道怎么求比值吗? 预设:比的前项除以后项。教师:下面就请同学们求出试一试中的各个比的比值。学生独立完成,教师巡视指导。汇报交流,教师给予鼓励性评价。教师提出:比的后项可以是 0 吗?为什么?学生简单交流后汇报。预设:比的后项不能为零,因为在求比值是比的后项是除数,除数不能为零。教师给予鼓励。 3.探讨比与除法、分数之间的关系。 分组讨论,议一议:比、分数和除法之间有什么关系? 学生讨论后汇报,根据汇报情况师生共同完成下表。 【设计意图:通过小组内讨论交流,探讨比、除法、分数的联系,促使了原有知识的重新建构,加强了知识之间的联系。

17、充分调动了学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,培养学生的探究能力和探究意识。】(三)巩固新知 1.处理教材第 51 页课堂活动第(1)小题。据世界卫生组织统计,全球每年有 500 万人因吸烟而死亡,其中中国因吸烟而死亡的人数与全球因吸烟而死亡的人数的比是 15。 你从所提供的信息中找到了哪些关于比的信息?看到这些信息,你有何想法? (2)图示呈现:两杯糖水,第一杯中糖与水的比是 2:50;第二杯中糖与水的比是: 50。哪一杯糖水更甜? 学生思考、讨论回答后,集体订正评价。2.让学生独立完成教材第 52 页练习十四第 1 题。指出下列每

18、个比的前项后项,并求出比值。学生独立完成集体订正评析。【设计意图:通过本环节,让学生对比的意义有一个进一步的理解,并且能够熟练准确地的求出一个比的比值,为今后的学习打下坚实的基础。】(四)达标反馈1.填空题。(1)黑兔只数是白兔的 ,黑兔和白兔的只数比是( )。31(2)用 10 克糖与 90 克水配制成糖水,糖和水的重量比是( );糖和糖水的重量比是( )。(3)用一辆汽车运货,上午运了 5 次,共运 20 吨;下午运了 6 次,共运 24 吨。上、下午运的次数的比是( ),比值是( ); 上、下午运货吨数的比是( ),比值是( )。(4) ( ):8 = =( )4 = 0.25( )10

19、2.判断题。(1)小明身高 1 米,爸爸身高 174 厘米,小明与爸爸身高的比是 1 :174。( )(2)比的前项不能为零。 ( )(3)把 1 克盐溶于 20 克水中,盐与盐水重量的比是 1 : 20。 ( )(4)4 比 5 可以写成 4 : 5 ,也可以写成 ,都读作四比五。 ( 54)3.根据下表中的数据写出几组比。4.求出下列各比的比值。4:8 0.2:0.1 : :32451答案:1.(1)1:3(2)10:90 10:100(3)5:6 20:24 (4)2 40 1 62.(1)(2) (3)(4)3.答案不唯一,例如:3:5 5:3 180:60 等4.0.5 2 0.5

20、3 (五)课堂小结谈话:今天这堂课,学习之后,你们有什么收获呢?生 1:我们想知道的东西,都得到解决了。生 2:我认识了比,知道了它的意义与写法。生 3:我认识了比,并学会了比值的计算。生 4:比实际上就是除法,只是形式不同。这节课上,大家的表现都很出色,让我们为自己鼓掌【设计意图:通过谈话的方式帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验,教师的鼓励,使学生体验到成功的喜悦,极大地调动了学生学习的积极性。】 (六)布置作业1.填一填。(1)在 21:5 中,比的前项是( ),后项是( ),比值是( )。(2)一个长方形的长是 9 厘米,宽是 6 厘米,这个长方形的长

21、与宽的比是( ),宽和长的比是( )。(3)( ):8 = =( )2 = 0.5( )10(4)乙数是甲数的 ,则甲数与乙数的比是( )。87(5)甲数除以乙数的商是 ,那么甲数与乙数的比值是( )。322.求出下列各比的比值。3:5 0.8:0.4 : :1243123.货车 4 小时行驶 260 千米,轿车 3 小时行驶 240 千米,轿车与货车的时间比、路程比和速度比分别是多少?答案:1.(1)21 5 4.2 (2)9:6 6:9 (3) 4 20 1 (4) 8:7(5) 322.0.6 2 0.5 3.3:4 240:260 80:65 板书设计比的意义表示两个数相除的形式,又叫

22、做比。 5 : 4 5 4 5 前 比 后 比项 号 项 值 比的前项除以后项所得的商,是这个比的比值。 教学反思比的意义这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同量的比。教材还介绍了每个比中两项的名称和比值的概念,举例说明比值的求法。通过议一议的方式揭示出比的后项不能是 0 以及比和除法、分数的关系。本课的教学重点是理解和运用比的意义及比与除法、分数的联系;教学难点是理解比的意义。 学生是在学过分数与

23、除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行学习的。高年级学生具有一定的阅读、理解能力和自学能力,所以在教学时,组织学生以小组为单位进行研究、探索、讨论、总结,培养学生的创新意识和自主学习能力。 课后,我对情境的使用产生了很多迷惑,不知怎样使用情境来抽象出比,什么是抽象出,怎样抽象出,生活及生活中的数是真实存在的,而文字的描述是抽象的,也就是通过生活情境来认知比的存在及它存在的意义。 今天这节课利用生活情境,生活中的这些倍数关系、量与量之间的相除关系,使学生感受到刻画两个量之间的数量关系,体会引入比的必要性以及比在生活中的广泛存在。由此我想到在情境的运用引出比的意义

24、后让学生多举一些生活中的比来体会比在生活中的广泛存在,就如在举例中学生会提到比赛场上分数之比,加以比较也会让学生明白生活中的比是两个数的倍数关系、两个量相除的关系,这也应该算是我们所要研究的课题的体现吧,运用生活中的比帮助学生直观的认识比、应用比,学生的大量实例会感染其他学生体会到生活中的比,从而达到课题目标的实现。 一堂课下来,感觉不足之处还有很多,有些细节地方处理得不是很到位。像在教学比的意义时,对谁是谁的几倍或几分之几也可以说成谁和谁的比,强调的还不够,使学生的对两个数相除也可以说成两个数的比的感悟不深刻;还有因为时间原因,习题以下内容包括课堂总结和延伸处理得比较粗糙,还有很多地方需要学

25、习改进。 教学资料包(一) 教学精彩片段比的意义(教学片断) 教师:同学们观察例 1 表中的信息,比较出张丽和李兰两人从家到学校的路程以及他们两人从家到学校所用的时间之间的关系和区别,请问还可以怎样比? 生:还可以通过先求出两人路程和时间各自间的倍数关系来比。240200=1.2,54=1.25教师:请同学们主意观察前面所分析的比较方法,有什么特点? 生 1:都是用除法来比较的。生 2:都是运用除法的意义来分析的。 教师:其实运用除法去比较两个数量之间的关系,还有一种新的表示形式比。板书: 54= 45张丽与李兰两人从家到学校的时间的比是 5 比 4, 54= 。5张丽与李兰两人从家到学校的路

26、程的比是 240 比 200, 240200= 6教师:那么究竟什么叫做比?大家可以先讨论一下. 生 1:如果一个数是另一个数的几倍,这两个数就可写成比。 生 2:如果一个数是另一个数的几分之几,这两个数也可写成比。 教师:你们已经看出了“比”表示的范围,但还未概括出比的意义,再整体观察这一列算式的特点,看谁能有所发现。生:两个数相除又叫两个数的比。 教师:你们的发现就是我们今天学习的主题比的意义(板书)。 【评析:这一片断的设计就比较好地实现了学生主题参与地过程:由比较数量的多少到比较数量间的分率(比较数量间的倍数关系),既有量的积淀,也有形式上的突破,既有比的外延的“范围”,又有比的内涵的

27、体验与感受.不但探究出了比的意义,又经历了知识展开和形成的过程,尤为重要的是在揭示学习主题的过程中学会了方法,发展和提升了思维的层次,不失为本片断设计的一大亮点。】(二) 数学资源1.小明骑自行车 5 分钟行了 1500 米,写出小明所行路程和所用时间的比,并求出比值。(想一想,这个比值表示什么?)2.下面各比的前项、后项和比值分别是什么?8 :11=811= 1.2:0.3=1.20.3=4183.求出下列各比的比值。15:5= 1:2= : = 1: =314544.判断。(1)比的前项、后项可以是任意数。 ( )(2)小明的身高是 142cm,爸爸的身高是 1.8m,小明和爸爸的身高比是

28、 142:1.8。( )(3)一场球赛的比分是 2:0,因此比的后项可以是 0。 ( )答案:1.15005=300 表示小明骑自行车的速度 2.前项 8 后项 11 比值 ; 前项 1.2 后项 0.3 比值 4183.3 0.5 3454.(1)(2)(3) 说课设计比的意义说课稿一、教材分析 “比的意义”是西师版六年级第十一册教材第四单元第一部分比的意义和性质第 1 课时的内容,是本教材中教学重点之一。它在教材中起着承上启下的重要作用。通过对这部分内容的教学,不仅可以使学生对已有的两个数相比的知识得以升华,同时也能够对学生进一步学习比的性质、比的应用和比例的相关知识打下坚实的基础。“比的

29、意义”这部分知识内容繁杂,学生缺乏原有感知、经验、不易理解和掌握。针对知识内容特点和学生的认知规律,在教学过程中,我采用组织学生围绕“比”的问题,自主、探究、合作交流、分析、概括、比较、总结的教学方法,突出了传统的教学模式,实现学生自主学习。在教学过程中,培养了学生的创新精神。二、教学目标 根据上述教材分析,结合本节课的内容特点,本人确定了以下的教学目标: 1.知识与技能:在具体情境中理解比的意义,知道比的各部分名称,掌握比的读、写方法,会求比值。2.过程能力与方法:通过学生的小组合作与交流,让学生知道比与除法、分数间的联系与区别,从而向学生渗透对立统一的辩证唯物主义观点。 3.情感态度与价值

30、观:培养学生的合作意识,让学生在小组活动中初步理解比与分数,比与除法之间的关系。三、教学重点、难点: 教学重点:理解比的意义。教学难点:比、分数、除法的联系。四、说教法 、学法说教法:本节课用创设情境法,激发学生对比的知识的研究兴趣。从日常生活中,培养学生能够发现数学问题。运用知识之间的联系,在除法的基础上教学比的意义,目的使学生对比有整体的认识,发展学生的思维能力和语言表达能力,调动学生的各种感官参与到学习活动中。练习形式多样,使学生从多种方式理解比的意义。采用激励、评价等多种有效的方法,鼓励学生多比较、多思考,善于探究与协作交流,培养学生养成良好的学习数学的习惯。说学法: 改变学生的学习方

31、式,让学生在自主探究、合作交流中提高解决问题能力。学生是课堂的主人,如何体现学生的主人意识,我想在数学课堂教学中,学生应始终在合作中发现问题,在合作中探讨问题,在合作中解决问题。在这一系列的合作中进行恰当的学习活动,有时也能产生思想的碰撞、人格的升华这样才能体现学生在数学课堂上的主人意识。 五、说教学过程 对本节课的教学,我精心设计了几个主要环节。(一)新课导入首先出示例 1 的表格,教师让学生观察表格,然后谈话,你从表格中了解到什么信息?每两个数量之间有怎样的关系?你都会用哪些方法表示它们之间的关系? 学生可能找到每两个数量之间各种各样的关系,针对学生所答,及时做出引导评价。 教师接着引导,

32、我们会用加法表示两个量之间的合并关系。会用减法表示两个量之间的相差关系,也会用分数或除法表示两个量之间的倍数关系。今天,我们再来学习一种新的表示两个量间数量关系的方法,揭示课题比的意义。【设计意图:从生活中常见的例子(从家到学校所以的时间和路程)导入新课,能发现比在生活中的应用,从中培养学生在生活中发现数学问题、提出问题的意识。】(二)探究新知在这一环节中首先教学比的初步认识及比的读、写方法。 教师让学生观察例 1 中的表格,根据表格中信息写出用分数或除法表示两个量之间的倍数关系。学生用分数或除法表示表中两个量之间倍数关系之后,教师给予鼓励。然后教师根据学生写出的算式,揭示:像这样两个数相除又

33、叫做两个数的比。 接着举出教材的例子,揭示比的读法和写法。(比如张丽用的时间是李兰的几倍? 54= ,我们就说,张丽和李兰所用时间的比是“5 比 4”,可以写成 5:4 或 ,读作:45 455 比 4。)教师接下来说明,比是除法的另一种表达形式,它也表示两个数量之间的倍数关系,只是形式不同。然后让学生带着下面的问题自读教科书例 1 内容。 问题:比的各部分名称是什么? 你都知道了关于比的哪些知识? 5 比 4 是哪个数量与哪个数量的比?那 4 比 5 呢? 学生自学后根据问题谈自己的收获,教师给予鼓励性评价。 紧跟着教学例 1 之后的“试一试”。 组织学生独立思考,解决问题,然后集体订正,评

34、价。 学生汇报之后教师追问:为什么张丽与李兰所用时间的比中 5 是比的前项,而在李兰与张丽所用时间的比中 5 又是比的后项呢? 学生回答后,教师指出:两个数的比是有顺序的。因此,在用比表示两个数量的关系时,一定要按照叙述的顺序,正确表达是一个数量与另一个数量的比,不能颠倒两个数的位置。教师可以提出:5 分钟、4 分钟都表示什么?(时间) 5 分钟、4 分钟都表示时间,它们是同一种量,我们就说这两个数量的比是同类量的比。 然后让学生观察“试一试”中的最后一个问题。 教师通过以下问题引导:求的是什么?谁和谁进行比较?路程和时间谁除以谁?路程和时间是同一类量吗?(不是)不同类量比的结果是什么?(产生

35、一个新的量:速度)通过学生的回答,进一步引导总结出结论:两个数量的比可以是同类量的比,也可以是不同类量的比。【设计意图:在出示例题后,组织学生围绕“比”的问题去研究、探索、讨论、概括、总结,实现了自主学习,这样,尊重学生的主体地位,培养创新精神。】在学生初步认识了比的意义之后,教学求比值。 教师通过例子:54 表示什么?45 表示什么?它们的结果是什么? 揭示:比的前项除以比的后项得到的商就是比值。此时可提问:你知道怎么求比值吗? (比的前项除以后项。)教师:下面就请同学们求出试一试中的各个比的比值。学生独立完成,教师巡视指导。汇报交流,教师给予鼓励性评价。讨论:比的后项可以是 0 吗?为什么

36、?学生简单交流后汇报。(比的后项不能为零,因为在求比值是比的后项是除数,除数不能为零。)教师给予鼓励。 最后探讨比与除法、分数之间的关系。 分组讨论,议一议:比、分数和除法之间有什么关系? 学生讨论后汇报,根据汇报情况师生共同总结出三者之间的关系。 【设计意图:通过小组内讨论交流,探讨比、除法、分数的联系,促使了原有知识的重新建构,加强了知识之间的联系。充分调动了学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,培养学生的探究能力和探究意识。】(三)巩固新知 本环节设计一下两个问题:1.处理教材第 51 页课堂活动第(1)小题。据世界卫生组织统计,

37、全球每年有 500 万人因吸烟而死亡,其中中国因吸烟而死亡的人数与全球因吸烟而死亡的人数的比是 15。 你从所提供的信息中找到了哪些关于比的信息?看到这些信息,你有何想法? (2)图示呈现:两杯糖水,第一杯中糖与水的比是 2:50;第二杯中糖与水的比是: 50。哪一杯糖水更甜? 学生思考、讨论回答后,集体订正评价。2.让学生独立完成教材第 52 页练习十四第 1 题。指出下列每个比的前项后项,并求出比值。学生独立完成集体订正评析。【设计意图:通过本环节,让学生对比的意义有一个进一步的理解,并且能够熟练准确地的求出一个比的比值,为今后的学习打下坚实的基础。】(四)归纳总结本环节我采取了师生对话的

38、方式对本节课所学知识进行小结。谈话:今天这堂课,学习之后,你们有什么收获呢?生 1:我们想知道的东西,都得到解决了。生 2:我认识了比,知道了它的意义与写法。生 3:我认识了比,并学会了比值的计算。生 4:比实际上就是除法,只是形式不同。这节课上,大家的表现都很出色,让我们为自己鼓掌【设计意图:通过谈话的方式帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验,教师的鼓励,使学生体验到成功的喜悦,极大地调动了学生学习的积极性。】 六、说板书比的意义表示两个数相除的形式,又叫做比。 5 : 4 5 4 5 前 比 后 比项 号 项 值 比的前项除以后项所得的商,是这个比的比值。

39、 【设计意图:在本节课的板书中,我利用简洁明了的形式,形象的反映了本节课的知识体系以及知识的发展过程,突出了本课的教学重点。】资料链接无脊椎动物无脊椎动物(Invertebrate)是背侧没有脊柱的动物,它们是动物的原始形式。其种类数占动物总种类数的 95%。分布于世界各地,现存约 100 余万种。包括棘皮动物、软体动物、扁形动物、环节动物、腔肠动物、节肢动物、原生动物、线形动物等。动物学的一个分支学科。在动物分类中,根据动物身体中有没有脊椎骨而分成脊椎动物和无脊椎动物两大类。研究无脊椎动物的分类、形态、生理特点、地理分布、繁殖、进化等的科学,叫无脊椎动物学。无脊椎动物学中包括:原生动物学、蠕

40、虫学、昆虫学、软体动物学、甲壳动物学等。区分依据无脊椎动物的神经系统呈索状,位于消化管的腹面;而脊椎动物为管状,位于消化管的背面。无脊椎动物的心脏位于消化管的背面;脊椎动物的位于消化管的腹面。无脊椎动物无骨骼或仅有外骨骼,无真正的内骨骼和脊椎骨;脊椎动物有内骨骼和脊椎骨。1822 年 JBde 拉马克将动物界分为脊椎动物和无脊椎动物两大类。1877 年德国学者 E海克尔将柱头虫、海鞘、文昌鱼等动物与脊椎动物合称脊索动物门,与无脊椎动物的各门并列,把脊椎动物在分类系统中降为脊索动物门中的一个亚门,与半索动物亚门(柱头虫),尾索动物亚门(海鞘)和头索动物亚门(文昌鱼)并列。70 年代以来半索动物已

41、独立成门,由于后 3 个类群属于无脊椎动物范畴,这样无脊椎动物实际上包括了除脊椎动物亚门以外所有的动物门类,是动物学中的一个一般名称,而不是正式的分类阶元。物种分类无脊椎动物的种类非常厐杂,现存约 100 余万种(脊椎动物约 5 万种),已绝灭的种则更多。它包括的门数因动物学的发展而不断增加。由于对动物的各个方面研究得愈加详尽,人们对其彼此间亲缘关系的认识也愈加深入,因而各门的分类地位常有更动。无脊椎动物的分类有按形态和按 18s rRNA 序列分类两种。如果按形态学分类的话,无脊椎动物首先按照组成的细胞数,分为单细胞动物(Protozoa)和多细胞动物(即后生动物 Metazoa)两种。前者

42、所属的动物有争议,例如眼虫,会因为其体内的叶绿体被归入为植物。多细胞动物再被分为侧生动物(Parazoa)和真后生动物(Eumetazoa)。前者包括海绵动物,扁盘动物和中生动物。这三种动物和真后生动物缺乏联系。组织分化程度低。接下来,真后生动物按照其身体对称方式被分为辐射对称动物和两侧对称动物。前者包括刺胞动物门和栉水母动物门。然后将两侧对称的动物按其体腔的有无,有的话是真是假,分为三类,即无体腔动物(Acoelomata),假体腔动物(Pseudocoelomata)和真体腔动物(Eucoelomata)。但是纽形动物门介乎于假体腔动物和真体腔动物之间,分类位置有疑问。无体腔动物的代表是扁

43、形动物。假体腔动物的体腔并不是由中胚层包绕的,是原肠未完全退化的产物,代表动物是线虫动物和轮形动物。真体腔动物的体腔是有中胚层包裹的。真体腔动物接着按原肠孔(Blastoporus)的发展分为原口动物(Protostomia),后口动物(Deuterostomia)和过渡类型触手动物(Tentaculata)。后口动物的代表是棘皮动物(和非“无脊椎动物”的脊索动物)。过渡类型包括帚虫动物,腕足动物和苔藓动物三种。其他的真体腔动物都是原口动物,包括节肢动物,缓步动物,有爪动物,软体动物,星虫动物,螠虫动物门和环节动物等。这种分类有很大问题,比如纽形动物的“无家可归”,而扁形动物,线虫动物是原口动

44、物,却因为体腔不是“真体腔”而没有“资格”去被归类。触手动物有很多后口动物的特征,比如辐射卵裂,体腔是由内胚层内陷形成的中胚层包裹的。但是来自分子生物学的证据却表明它们是原口动物。按遗传学分类和按形态学分类出入在于两侧对称动物中。按遗传学分类的话,两侧对称动物首先按原肠孔的发展去向分为原口动物和后口动物。在形态学分类中的过渡类型触手动物则被全部归到原口动物中。原口动物接着会按照蜕皮假说被分为两种:蜕皮动物和冠轮动物。蜕皮动物的特征是,这些动物在一种名叫蜕皮激素(Ecdyson)的作用下,会退去身体表面的角质层外皮。节肢动物,线形动物,缓步动物和有爪动物都属蜕皮动物。冠轮动物的特征是发育经过担轮

45、幼虫阶段(但有些动物发育过程中并不经历幼虫阶段,很好的例子是蚯蚓)或是有触手冠。软体动物门(Mollusca)、环节动物门(Annelida)、纽形动物门(Nemertea)、星虫动物门(Sipunculida)、螠虫动物门(Echiura)、须腕动物门(Pogonophora),苔藓动物门(Bryozoa)、内肛动物门(Entoprocta)、腕足动物门(Brachiopoda)和帚虫动物门(Phoronida)都属于这一轮动物。这种分类方法没有形态分类学的问题。但也有一些小问题,例如有爪动物的分类位置(位于蜕皮动物和冠轮动物之间)有争议。其他特征无脊椎动物多数体小,但软体动物门头足纲大王乌

46、贼属的动物体长可达 18 米,腕长11 米,体重约 30 吨。无脊椎动物多数水生,大部分海产,如有孔虫、放射虫、钵水母、珊瑚虫、乌贼及棘皮动物等,全部为海产,部分种类生活于淡水,如水螅、一些螺类、蚌类及淡水虾蟹等。蜗牛、鼠妇等则生活于潮湿的陆地。而蜘蛛、多足类、昆虫则绝大多数是陆生动物。无脊椎动物大多自由生活。在水生的种类中,体小的营浮游生活;身体具外壳的或在水底爬行(如虾、蟹),或埋栖于水底泥沙中(如沙蚕蛤类),或固着在水中外物上(如藤壶、牡蛎等)。无脊椎动物也有不少寄生的种类,寄生于其他动物、植物体表或体内(如寄生原虫、吸虫、绦虫、棘头虫等)。有些种类如蚓蛔虫和猪蛔虫等可给人音带来危害。第

47、 2 课时 比的基本性质 教学内容:教科书第 51 页例 2、例 3,比的基本性质以及利用比的基本性质化简比。 教学提示:本节比的基本性质是在学生理解掌握了比的意义,比和除法、分数的关系的基础上组织教学的,学好比的基本性质为下一步学习化简比打下基础。本节一共安排了两道例题例 2 和例 3。例 2 直接由分数和比的比较引入教学,有利于学生启动分数的相关经验来理解比的知识,上排的分数既可以看作分数,也可以看作比。用分数的基本性质促进学生对比的基本性质的理解,用最简分数的概念理解最简比的概念。教学时可采用“观察比较讨论分析归纳总结”的方式组织教学。教学时还要注意激活学生已经积累的探索规律的经验,放手让学生自己探究比的基本性质。例 3 是化简比,包括化简整数比和分数比,都是应用比的基本性质,强调比的结果应该是最简整数比。教学例 3 时,可以先让学生尝试应用比的基本性质化简比,再对照约分的方法,使学生明确最简整数比就是比的前项与后项的公因数只有 1.然后对比例题,让学生明白为什么要化简比,什么叫最简整数比。 教学目标:1.知识与技能:通过对分数基本性质的记忆和沟通分数与比、除法之间的联系,理解比的基本性质,能够运用比的基本性质把比化成最简单的整数比。2.过程与方法:积累数学经验,增强自主

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 小学 > 小学数学 > 西师大版 > 六年级上册