2019-2020学年人教A版数学必修3学案:2.2.1用样本的频率分布估计总体分布

上传人:可** 文档编号:76193 上传时间:2019-07-30 格式:DOCX 页数:8 大小:300.98KB
下载 相关 举报
2019-2020学年人教A版数学必修3学案:2.2.1用样本的频率分布估计总体分布_第1页
第1页 / 共8页
2019-2020学年人教A版数学必修3学案:2.2.1用样本的频率分布估计总体分布_第2页
第2页 / 共8页
2019-2020学年人教A版数学必修3学案:2.2.1用样本的频率分布估计总体分布_第3页
第3页 / 共8页
2019-2020学年人教A版数学必修3学案:2.2.1用样本的频率分布估计总体分布_第4页
第4页 / 共8页
2019-2020学年人教A版数学必修3学案:2.2.1用样本的频率分布估计总体分布_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、第二章 统计2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布学习目标1.通过实例体会分布的意义和作用,通过对现实生活的探究,感知用数学知识解决问题的方法.2.在表示样本数据的过程中,学会列频率分布表,会画频率分布直方图、频率折线图和茎叶图,理解数形结合的数学思想和逻辑推理的数学方法.合作学习一、设计问题,创设情境问题 1:在 2014 南京“青奥会”男篮比赛中,甲、乙两名篮球运动员每场比赛得分的原始记录如下:甲运动员得分:12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分:8,13,14,16,23,26,28,38,39,51,31,29,

2、33请问从上面的数据中你能否看出甲、乙两名运动员哪一位发挥比较稳定?如何根据这些数据做出正确的判断呢?问题 2:如下样本是随机抽取近年来北京地区 7 月 25 日至 8 月 24 日的日最高气温.41.9 37.5 35.7 35.4 37.2 38.1 34.7 33.7 33.37 月 25 日至 8 月 10 日32.5 34.6 33.0 30.8 31.0 28.6 31.5 28.828.6 31.5 28.8 33.2 32.5 30.3 30.2 29.8 33.18 月 8 日至 8 月 24 日32.8 29.8 25.6 24.7 30.0 30.1 29.5 30.3怎

3、样通过上表中的数据,分析比较两时间段内的高温(33 ) 状况?问题 3:(1)我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准 a,用水量不超过 a 的部分按平价收费,超出 a 的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准 a 定为多少比较合理呢?你认为,为了较合理地确定出这个标准,需要做哪些工作?(2)什么是频率分布?(3)画频率分布直方图有哪些步骤?(4)频率分布直方图的特征是什么?二、信息交流,揭示规律问题 4:(1)什么是频率分布折线图?(2)什么是总体密度曲线?(3)对于

4、任何一个总体,它的密度曲线是否一定存在?是否能准确地画出来?(4)什么叫茎叶图?(5)茎叶图有什么特征?三、运用规律,解决问题【例 1】 为了了解中学生的身体发育情况,对某中学 17 岁的 60 名女生的身高进行了测量,结果如下:(单位:cm)154 159 166 169 159 156 166 162 158 167156 166 160 164 160 157 151 157 161 162158 153 158 164 158 163 158 153 157 163162 159 154 165 166 157 151 146 157 158160 165 158 163 163 16

5、2 161 154 165 159162 159 157 159 149 164 168 159 153 160列出样本的频率分布表;绘出频率分布直方图 .【例 2】 下表给出了某校 500 名 12 岁男孩用随机抽样得出的 120 人的身高(单位:cm).区间界限 122,126) 126,130) 130,134) 134,138) 138,142)人数 5 8 10 22 33区间界限 142,146) 146,150) 150,154) 154,158)人数 11 6 5 20(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于 134 cm 的人数占总人数的百分比.

6、【例 3】 甲、乙两篮球运动员在一次重大运动会中每场比赛的得分如下,试比较这两位运动员的得分水平.甲:12,15,24,25,31,31,36,36,37,39,44,49,50;乙:8,13,14,16,23,26,28,33,38,39,51.四、变式训练,深化提高1.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图( 如图), 图中从左到右各小长方形面积之比为24171593,第二小组频数为 12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在 110 以上(含 110 次)为达标,试估计该学校全体高一学生的达标率是多少

7、?2.请同学们自己编制一道题目,请同位给出解答.五、反思小结,观点提炼我们这节课主要学习的内容是什么?请同学们自己总结出来.布置作业课本 P71练习第 1,3 题.课后巩固:1.如图是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知( )A.甲运动员的成绩好于乙运动员B.乙运动员的成绩好于甲运动员C.甲、乙两名运动员的成绩没有明显的差异D.甲运动员的最低得分为 0 分2.有一个容量为 45 的样本数据,分组后各组的频数为:(12.5,15.5,3;(15.5,18.5,8;(18.5,21.5,9;(21.5,24.5,11;(24.5,27.5,10;(27.5,30.5,4.由此估计,

8、不大于 27.5 的数据约为总体的( )A.91% B.92% C.95% D.30%3.一个容量为 20 的样本数据,数据的分组及各组的频数为:10,20),2;20,30),3;30,40),4;40,50),5;50,60),4;60,70,2.则样本在区间10,50)上的频率为( )A.0.5 B.0.7 C.0.25 D.0.054.一个高中研究性学习小组对本地区 2012 年至 2014 年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如图), 根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭 万盒. 5.为了了解

9、一大片经济林生长情况,随机测量其中的 100 株的底部周长,得到如下数据表(单位:cm).135 98 102 110 99 121 110 96 100 103125 97 117 113 110 92 102 109 104 112109 124 87 131 97 102 123 104 104 128105 123 111 103 105 92 114 108 104 102129 126 97 100 115 111 106 117 104 109111 89 110 121 80 120 121 104 108 118129 99 90 99 121 123 107 111 91

10、10099 101 116 97 102 108 101 95 107 101102 108 117 99 118 106 119 97 126 108123 119 98 121 101 113 102 103 104 108(1)编制频率分布表;(2)绘制频率分布直方图;(3)估计该片经济林中底部周长小于 100 cm 的树木约占多少 ?周长不小于 120 cm 的树木约占多少?参考答案一、设计问题,创设情境问题 3:(1)为了制定一个较为合理的标准 a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分

11、析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式.作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,为我们提供解释数据的新方式.(2)频率分布是指一个样本数据在各个小范围内所占比例的大小;一般用频率分布直方图反映样本的频率分布.(3)一般步骤为:计算一组数据中最大值与最小值的差,即求极差;决定组距与组数;将数据分组;列频率分布表;画频率分布直方图.(4)频率分布直方图的特征:从频率分布直方图可以清楚地看出数据分布的总体趋势.从频率分布直方图得不出原始的数据内容,把数据表示成直方

12、图后,原有的具体数据信息就被抹掉了.二、信息交流,揭示规律问题 4:(1)连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线 ,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.(3)实际上,尽管有些总体密度曲线是客观存在的,但一般很难像函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确.(4)当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字 ,两边的数字表示个位数,即第二个有效

13、数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.(5)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到; 二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示.茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组数据,两组以上的数据虽然能够记录,但是没有表示两组数据那么直观、清晰.三、运用规律,解决问题【例 1】 解:第一步,求极差:上述 60 个数据中最大为 169,最小为 146.故极差为 169-146=23(cm).第二步,确定组距和组数,可取组距为 3 cm,则组数为 =7 ,可

14、将全部数据分为 8 组.233 23第三步,确定组限:145.5,148.5),148.5,151.5),151.5,154.5),154.5,157.5),157 .5,160.5),160.5,163.5),163.5,166.5),166.5,169.5).第四步,列频率分布表:分组 个数累计 频数 频率145.5,148.5) 1 0.017148.5,151.5) 3 0.050151.5,154.5) 6 0.100154.5,157.5) 8 0.133157.5,160.5) 18 0.300160.5,163.5) 11 0.183163.5,166.5) 10 0.1671

15、66.5,169.5) 3 0.050合计 60 1.000第五步,根据上述数据绘制频率分布直方图,如图:【例 2】 分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:分组 频数 频率122,126) 5 0.04126,130) 8 0.07130,134) 10 0.08134,138) 22 0.18138,142) 33 0.28142,146) 11 0.09146,150) 6 0.05150,154) 5 0.04154,158) 20 0.17合计 120 1.00(2)其频率分布直方图如下:(3)由样本频率分布表可知身高小于 134 cm

16、的男孩出现的频率为 0.04+0.07+0.08=0.19,所以我们估计身高小于 134 cm 的人数占总人数的 19%.【例 3】 解:画出两人得分的茎叶图如下 :从这个茎叶图可以看出甲运动员的得分大致对称,平均得分及中位数、众数都是 30 分左右; 乙运动员的得分除一个 51 外,也大致对称,平均得分及中位数、众数都是 20 分左右.因此甲运动员发挥比较稳定,总体得分情况比乙好.四、变式训练,深化提高1.分析:在频率分布直方图中, 各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于 1.解:(1)由于频率分布直方图以面积的形式反映了数据落在

17、各小组内的频率大小,因此第二小组的频率为 =0.08;42+4+17+15+9+3又因为第二小组频率= ,所以样本容量= =150.第二小 组频 数样 本容量 第二小 组频 数第二小 组频 率 =120.08(2)由题图可估计该学校高一学生的达标率约为 100%=88%.17+15+9+32+4+17+15+9+32.略五、反思小结,观点提炼总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时 ,将样本数据恰当分组,用各组的频率分布描述总体的分布

18、,方法是用频率分布表或频率分布直方图.课后巩固:1.A 2.A 3.B 4.855.解:(1)这组数据的最大值为 135,最小值为 80,极差为 55,可将其分为 11 组,组距为 5.频率分布表如下:分组 频数 频率 频率/组距80,85) 1 0.01 0.00285,90) 2 0.02 0.00490,95) 4 0.04 0.00895,100) 14 0.14 0.028100,105) 24 0.24 0.048105,110) 15 0.15 0.030110,115) 12 0.12 0.024115,120) 9 0.09 0.018120,125) 11 0.11 0.022125,130) 6 0.06 0.012130,135 2 0.02 0.004合计 1.00 1 0.200(2)直方图如图:(3)由频率分布表得,样本中小于 100 的频率为 0.01+0.02+0.04+0.14=0.21,样本中不小于120 的频率为 0.11+0.06+0.02=0.19,估计该片经济林中底部周长小于 100 cm 的树木约占 21%,周长不小于 120 cm 的树木约占 19%.

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 人教新课标A版 > 必修3