【全国III卷】2019年普通高校招生全国统一考试数学(文科)试卷(含答案解析)

上传人:可** 文档编号:66252 上传时间:2019-06-10 格式:DOCX 页数:20 大小:855.18KB
下载 相关 举报
【全国III卷】2019年普通高校招生全国统一考试数学(文科)试卷(含答案解析)_第1页
第1页 / 共20页
【全国III卷】2019年普通高校招生全国统一考试数学(文科)试卷(含答案解析)_第2页
第2页 / 共20页
【全国III卷】2019年普通高校招生全国统一考试数学(文科)试卷(含答案解析)_第3页
第3页 / 共20页
【全国III卷】2019年普通高校招生全国统一考试数学(文科)试卷(含答案解析)_第4页
第4页 / 共20页
【全国III卷】2019年普通高校招生全国统一考试数学(文科)试卷(含答案解析)_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、2019 年普通高等学校招生全国统一考试文科数学注意事项:1答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共 12 小题,每小题 5 分,共 60 分,在每小题给的四个选项中,只有一项是符合题目要求的.1.已知集合 ,则 ( )21,01ABx,ABA. B. C. D. , , 1,0,12【答案】A【解析】【分析】先求出集合 B 再求出交集.【详解】由题意得

2、, ,则 故选 A1x1,0AB【点睛】本题考查了集合交集的求法,是基础题.2.若 ,则 ( )(1i)2zzA. B. C. D. 1+i1i1+i【答案】D【解析】【分析】根据复数运算法则求解即可.【详解】 故选 D()2ii1iz【点睛】本题考查复数的商的运算,渗透了数学运算素养采取运算法则法,利用方程思想解题3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )A. B. C. D. 16141312【答案】D【解析】【分析】男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.【详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻

3、的排法种数相同,所以两位女生相邻与不相邻的概率均是 故选 D12【点睛】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养采取等同法,利用等价转化的思想解题4.西游记 三国演义 水浒传和红楼梦是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了 100 学生,其中阅读过西游记或红楼梦的学生共有 90 位,阅读过红楼梦的学生共有 80 位,阅读过西游记且阅读过红楼梦的学生共有60 位,则该校阅读过西游记的学生人数与该校学生总数比值的估计值为( )A. B. C. D. 0.50.60.70.8【答案】C【解析】【分析】根据题先求出阅读过西游记

4、的人数,进而得解.【详解】由题意得,阅读过西游记的学生人数为 90-80+60=70,则其与该校学生人数之比为70100=07故选 C【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养采取去重法,利用转化与化归思想解题5.函数 在 的零点个数为( )()2sinfxx0,2A. 2 B. 3 C. 4 D. 5【答案】B【解析】【分析】令 ,得 或 ,再根据 x 的取值范围可求得零点.()0fxsin0xcos1【详解】由 ,得 或2i2insico2sin(1cos)0f xsin0x, , 在 的零点个数是 3 故选 Bcos1x,0x、 或 ()f0,【点睛】本题考查在一定范围

5、内的函数的零点个数,渗透了直观想象和数学运算素养采取特殊值法,利用数形结合和方程思想解题6.已知各项均为正数的等比数列 的前 4 项和为 15,且 ,则 ( )na5314a3aA. 16 B. 8 C. 4 D. 2【答案】C【解析】【分析】利用方程思想列出关于 的方程组,求出 ,再利用通项公式即可求得 的值1,aq1,aq3a【详解】设正数的等比数列a n的公比为 ,则 ,231145,aq解得 , ,故选 C1,2q2314aq【点睛】应用等比数列前 项和公式解题时,要注意公比是否等于 1,防止出错n7.已知曲线 在点 处的切线方程为 ,则( )elxya1,ae2yxbA. B. C.

6、 D. ,1b,b1,ae 1,aeb【答案】D【解析】【分析】通过求导数,确定得到切线斜率的表达式,求得 ,将点的坐标代入直线方程,求得 ab【详解】详解:/ln1,xyae/1|2xkae将 代入 得 ,故选 D(,)yb1,【点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误求导要“慢”,计算要准,是解答此类问题的基本要求8.如图,点 为正方形 的中心, 为正三角形,平面 平面 是线段 的NABCDEECD,ABMED中点,则( )A. ,且直线 是相交直线BMEN,BENB. ,且直线 是相交直线C. ,且直线 是异面直线,D. ,且直线 是异面直线B

7、ENBEN【答案】B【解析】【分析】利用垂直关系,再结合勾股定理进而解决问题【详解】 , 为 中点 为 中点, , 共面相交,选项 C,D 为错作BDENMDEBMEN于 ,连接 ,过 作 于 OCOFO连 , 平面 平面 BFCDEAB平面 , 平面 , 平面 ,,EOOCDMFABCE与 均为直角三角形MN设正方形边长为 2,易知 ,3,012NE39534, 742FBB,故选 BEN【点睛】本题为立体几何中等问题,考查垂直关系,线面、线线位置关系.9.执行如图所示的程序框图,如果输入的 为 ,则输出 的值等于( )0.1sA. B. C. D. 412512612712【答案】D【解析

8、】【分析】根据程序框图,结合循环关系进行运算,可得结果.【详解】 不成立11.0,0.?2xSx不成立0,.1?24S成立61,0.78125.0?x输出 ,故选 D767122S 【点睛】循环运算,何时满足精确度成为关键,加大了运算量,输出前项数需准确,此为易错点10.已知 是双曲线 的一个焦点,点 在 上, 为坐标原点,若 ,则F2:145xyCPCO=POF的面积为( )OPAA. B. C. D. 3227292【答案】B【解析】【分析】设 ,因为 再结合双曲线方程可解出 ,再利用三角形面积公式可求出结果.0,Pxy=OPF0y【详解】设点 ,则 又 , 由0,20145xy453OP

9、F209xy得 ,即 , 故选 B2059y03y0322OPFSA【点睛】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养采取公式法,利用数形结合、转化与化归和方程思想解题11.记不等式组 表示的平面区域为 ,命题 ;命题620xyD:(,),29pxyDy.给出了四个命题: ; ; ; ,这四个命题:(,),1qDqpqpq中,所有真命题的编号是( )A. B. C. D. 【答案】A【解析】【分析】根据题意可画出平面区域再结合命题可判断出真命题.【详解】如图,平面区域 D 为阴影部分,由 得 即 A(2,4) ,直线 与直线2,6yx,y29xy均过区域

10、D,则 p 真 q 假,有 假 真,所以真假故选 A21xypq【点睛】本题考点为线性规划和命题的真假,侧重不等式的判断,有一定难度不能准确画出平面区域导致不等式误判,根据直线的斜率和截距判断直线的位置,通过直线方程的联立求出它们的交点,可采用特殊值判断命题的真假12.设 是定义域为 的偶函数,且在 单调递减,则( )fxR0,A. 233251log4fffB. 23328lfffC. 233251log4fffD. 23325lfff【答案】C【解析】【分析】由已知函数为偶函数,把 ,转化为同一个单调区间上,再比较大小233231log,4fff【详解】 是 R 的偶函数, fx33llo

11、g4ff,又 在(0,+)单调递减, ,3023log41fx 23323lfff,故选 C3231log4fff【点睛】本题主要考查函数的奇偶性、单调性,考查学生转化与化归及分析问题解决问题的能力二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.已知向量 ,则 _.(2,)(8,6)abcos,ab【答案】 10【解析】【分析】根据向量夹角公式可求出结果.【详解】详解: 2286cos, 10()abA【点睛】本题考点为平面向量的夹角,为基础题目,难度偏易不能正确使用平面向量坐标的运算致误,平面向量的夹角公式是破解问题的关键14.记 为等差数列 的前 项和,若 ,则 _.nS

12、na375,1a10S【答案】100【解析】【分析】根据题意可求出首项和公差,进而求得结果.【详解】详解: 得31725,63ad1,2a10909.S【点睛】本题考点为等差数列的求和,为基础题目,难度不大不能构造等数列首项和公差的方程组致使求解不通,应设出等差数列的公差,为列方程组创造条件,从而求解数列的和15.设 为椭圆 的两个焦点, 为 上一点且在第一象限.若 为等腰三角形,12F,2:+1360xyCMC12MF则 的坐标为_.M【答案】 ,5【解析】【分析】根据椭圆的定义分别求出 ,设出 的坐标,结合三角形面积可求出 的坐标.12MF、 M【详解】由已知可得 , 2 236,16,4

13、abcabc128Fc1224F设点 的坐标为 ,则 ,M00,xyy121204MFSy又 ,解得 ,122048415,415MFSy 015y,解得 ( 舍去) ,0536x03x0的坐标为 3,1【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养16.学生到工厂劳动实践,利用 打印技术制作模型.如图,该模型为长方体 挖去四棱3D1ABCD锥 后所得的几何体,其中 为长方体的中心, 分别为所在棱的中点,OEFGHO,EFGH, 打印所用原料密度为 ,不考虑打印损耗,制作该模型所需16cm4AB=C, A330.9/gcm

14、原料的质量为_ .g【答案】1188【解析】【分析】根据题意可知模型的体积为四棱锥体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量.【详解】由题意得,四棱锥 O-EFGH 的底面积为 ,其高为点 O 到底面214632cm的距离为 3cm,则此四棱锥的体积为 又长方体 的体1BC213V1ABCD积为 ,所以该模型体积为 ,其质量为22461Vcm 221413c0.938.g【点睛】此题牵涉到的是 3D 打印新时代背景下的几何体质量,忽略问题易致误,理解题中信息联系几何体的体积和质量关系,从而利用公式求解三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 1721

15、题为必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答.(一)必考题: 17.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将 200 只小鼠随机分成 两组,每组,AB100 只,其中 组小鼠给服甲离子溶液, 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔AB浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记 为事件:“乙离子残留在体内的百分比不低于 ”,根据直方图得到 的估计值为 .C5. PC07(1)求乙离子残留百分比直方图中 的值;,ab(2)分别估计甲、乙离子残留百分比的平均值(同一组

16、中的数据用该组区间的中点值为代表).【答案】(1) , ;(2) , .0.35a.104.56【解析】【分析】(1)由 可解得 和 的值;(2)根据公式求平均数.()0.7PCab【详解】(1)由题得 ,解得 ,由 ,解.201570.35a.0.15()10.7bPC得 .01b(2)由甲离子的直方图可得,甲离子残留百分比的平均值为,.52.30.4.250.16.574.0乙离子残留百分比的平均值为 3436.270.1586【点睛】本题考查频率分布直方图和平均数,属于基础题.18. 的内角 的对边分别为 ,已知 ABC, ,abcsinsi2ACb(1)求 ;(2)若 为锐角三角形,且

17、 ,求 面积的取值范围1B【答案】(1) ;(2) .3B(,)82【解析】【分析】(1)利用正弦定理化简题中等式,得到关于 B 的三角方程,最后根据 A,B,C 均为三角形内角解得 .(2)3B根据三角形面积公式 ,又根据正弦定理和 得到 关于 的函数,由于1sin2ABCSac 125ABCS是锐角三角形,所以利用三个内角都小于 来计算 的定义域,最后求解 的值域.VABC2()ABC【详解】(1)根据题意 由正弦定理得 ,因为 ,sinsi2Aabsinsin2A0故 ,消去 得 。sin0AsiniinCB, 因为故 或者 ,而根据题意 ,故B22A2ABC不成立,所以 ,又因为 ,代

18、入得 ,所以 .CBAC33(2)因为 是锐角三角形,又由前问 , , 得到 ,故VAB3,62AB2又应用正弦定理 , ,由三角形面积公式有62CsiniacAC12522sin()1sn3sinii4ABC CSacBBc .又因 ,故22sincosin33223(sicots)cot4i48CCC 62,故 .3tcot82868ABCSABS故 的取值范围是ABCS(,)2【点睛】这道题考查了三角函数 的 基础知识,和正弦定理或者余弦定理的使用(此题也可以用余弦定理求解) ,最后考查 是锐角三角形这个条件的利用。考查的很全面,是一道很好的考题.V19.图 1 是由矩形 和菱形 组成的

19、一个平面图形,其中 , ,ADEBRtCBFG1,2ABEF,将其沿 折起使得 与 重合,连结 ,如图 2.60FBC EDG(1)证明图 2 中的 四点共面,且平面 平面 ;, ACE(2)求图 2 中的四边形 的面积.AC【答案】(1)见详解;(2)4.【解析】【分析】(1)因为折纸和粘合不改变矩形 , 和菱形 内部的夹角,所以 ,ABEDRtCBFG/ADBE依然成立,又因 和 粘在一起,所以得证.因为 是平面 垂线,所以易证.(2) 欲求/BFCGFAC四边形 的面积,需求出 所对应的高,然后乘以 即可。ADCG【详解】(1)证: , ,又因为 和 粘在一起./BE/EF,A,C,G,

20、D 四点共面./又 .,B平面 BCGE, 平面 ABC, 平面 ABC 平面 BCGE,得证.ABAB(2)取 的中点 ,连结 .因为 , 平面 BCGE,所以 平面 BCGE,故CGM,ED/ABEDE,DE由已知,四边形 BCGE 是菱形,且 得 ,故 平面 DEM。60CMGC因此 。在 中,DE=1, ,故 。RtEM 3E2D所以四边形 ACGD 的面积为 4.【点睛】很新颖的立体几何考题。首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的。再者粘合后的多面体不是直棱柱,建系的向量解法在本题中略显麻烦,突出考查几何方法。最后将求四边形的面积考查考生的空间想象能力.ACGD20

21、.已知函数 .32()fxa(1)讨论 的单调性;(2)当 时,记 在区间 的最大值为 ,最小值为 ,求 的取值范围.03a()fx0,1Mm【答案】(1)见详解;(2) .8,27【解析】【分析】(1)先求 的导数,再根据 的范围分情况讨论函数单调性; (2) 讨论 的范围,利用函数单调性进行最()fxa a大值和最小值的判断,最终求得 的取值范围.Mm【详解】(1)对 求导得 .所以有32()fxa2()6()3fxax当 时, 区间上单调递增, 区间上单调递减, 区间上单调递增;0a,(,0)3(0,)当 时, 区间上单调递增;(,)当 时, 区间上单调递增, 区间上单调递减, 区间上单

22、调递增.0a(,)(0,)3a(,)3a(2)若 , 在区间 单调递减,在区间 单调递增,所以区间 上最小值为 .而02a()fx(0,)3a(,1)3a0,1()3af,故所以区间 上最大值为 . (),12f f0,()f所以 ,设函数 ,求导332()(4)()237aaaMmf3()27xg当 时 从而 单调递减.而 ,所以 .即2()19xg02x()0g()gx038a的取值范围是 .m8,7若 , 在区间 单调递减,在区间 单调递增,所以区间 上最小值为 而23a()fx(0,)3a(,1)3a0,1()3af,故所以区间 上最大值为 . (0),12f f0,()f所以 ,而

23、,所以 .即 的332(0)()37aaMmf23a38127aMm取值范围是 .8(,1)27综上得 的取值范围是 .m8,2)7【点睛】(1)这是一道常规的函数导数不等式和综合题,题目难度比往年降低了不少.考查的函数单调性,最大值最小值这种基本概念的计算.思考量不大,由计算量补充.21.已知曲线 ,为直线 上的动点,过 作 的两条切线,切点分别为 .2:,xCyD12yDC,AB(1)证明:直线 过定点:AB(2)若以 为圆心的圆与直线 相切,且切点为线段 的中点,求该圆的方程.50,2EABAB【答案】(1)见详解;(2) 或 .225()4xy225()xy【解析】【分析】(1)可设

24、, , 然后求出 A,B 两点处的切线方程,比如 :1(,)Axy2(,)B1(,)2Dt AD,又因为 也有类似的形式,从而求出带参数直线 方程,最后求出它所过的定点.112yt B(2)由(1)得带参数的直线 方程和抛物线方程联立,再通过 为线段 的中点, 得出ABMAEMAB的值,从而求出 坐标和 的值,最后求出圆的方程.tME【详解】(1)证明:设 , ,则 。又因为 ,所以 .则切线 DA 的斜率1()2Dt1()xy21x21yxyx为 ,故 ,整理得 .设 ,同理得 . ,1x1()yxt10t2(,)B10t1()Axy都满足直线方程 .于是直线 过点 ,而两个不同的点确定一条

25、2(,)B2ty1txy,AB直线,所以直线 方程为 .即 ,当 时等式恒成立。AB0x2()020ty所以直线 恒过定点 .1(0,)2(2)由(1)得直线 方程为 ,和抛物线方程联立得:AB0txy化简得 .于是 , 设 为线段210txy210xt12xt 21212()1ytxtM的中点,则AB(,)Mt由于 ,而 , 与向量 平行,所以 ,E2,tAB(1,)t2()0t解得 或 .0t1t当 时, , 所求圆的方程为 ;t(,2)EME225()4xy当 时, 或 , 所求圆的方程为 . 1t(1,)(1,)EM225()xy所以圆的方程为 或 .2254xy225xy【点睛】此题

26、第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以.思路较为清晰,但计算量不小.(二)选考题:共 10 分.请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分选修 4-4:坐标系与参数方程22.如图,在极坐标系 中, , , , ,弧 , , 所在圆的Ox(2,0)A(,)4B(2,)C(,)DABCAD圆心分别是 , , ,曲线 是弧 ,曲线 是弧 ,曲线 是弧 .(1,0),(1,)1MA23M(1)分别写出 , , 的极坐标方程;1M23(2)曲线 由 , , 构成,若点 在 上,且 ,求 的 极坐标.PM|3OP【答案】(1) ,

27、 , ,2cos(0)42sin()42cos()4(2) , , , .(3)6(3)5()6【解析】【分析】(1)将三个过原点的圆方程列出,注意题中要求的是弧,所以要注意的方程中 的取值范围.(2)根据条件 逐个方程代入求解,最后解出 点的极坐标 .3P【详解】(1)由题意得,这三个圆的直径都是 2,并且都过原点 .,1:2cos(0,)4M, .23:2sin()43 3:2cos()2cos(,)4M(2)解方程 得 ,此时 P 的极坐标为cos3(0,)6(3,)6解方程 得 或 ,此时 P 的极坐标为 或2in(,)432(,)2(3,)解方程 得 ,此时 P 的极坐标为3cos(

28、,)565(3,)6故 P的 极坐标为 , , , .()632()(3)【点睛】此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大,属于中档题.选修 4-5:不等式选讲23.设 ,且 .,xyzR1xyz(1)求 的最小值;222()()()(2)若 成立,证明: 或 .222113xyza3a 1【答案】(1) ;(2) 见详解 .43【解析】【分析】(1)根据条件 ,和柯西不等式得到 ,再讨论 是否可以达1xyz2224(1)()(1)3xyz,xyz到等号成立的条件.(2)恒成立问题,柯西不等式等号成立时构造的 代入原不等式,便可得到参数 的,xyza取值范围.【详解】(1)

29、故2222 22(1)()(1)(1)(1)(1)4xyz zxyz等号成立当且仅当 而又因 ,解得24()3xyzxy时等号成立5313yz所以 的最小值为 .222(1)()(1)xyz43(2)因为 ,所以 .222()(1)()3xyza2222()(1)()1)xyza根据柯西不等式等号成立条件,当 ,即 时有21xyza3213xayz成立.222 22()(1)()1)()()xyza a所以 成立,所以有 或 . a3 另解:用反证法. 若 或 不成立,那么 成立,则 而3 11a2()1a左面等号成立当且仅当2222()()()xyzxyz,又因为 所以 .故此时1a1xyz213a,即2222 22()()()()()1xyzxyz,与原命题矛盾放2221()(1)()3xyza【点睛】两个问都是考查柯西不等式,属于柯西不等式的常见题型.

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 数学高考 > 高考真题