1、2018 年浙江省温州市中考数学卷(WORD 版含答案)卷 I一、选择题(本题有 10 小题,每小题 4 分,共 40 分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.给出四个实数 , , , ,其中负数是( )5201A. B. C. 0D. 12.移动台阶如图所示,它的主视图是( )3.计算 的结果是( )62aAA. 3B. 4aC. 8aD. 12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A. 9 分 B. 8 分 C. 7 分 D. 6 分5.在一个不透明的袋中装有 10 个只有颜色不
2、同的球,其中 5 个红球、3 个黄球和 2 个白球.从袋中任意摸出一个球,是白球的概率为( )A. 12B. 13C. 10D. 156.若分式 的值为 0,则 的值是( )5xxA. B. C. 2D. 7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点 A,B 的坐标分别为( , ),( , ).现将该三角板向右平移使点 A 与点 O 重合,得到OCB,103则点 B 的对应点 B的坐标是( )A.( , ) B.( , )3C.( , )13D.( , )138.学校八年级师生共 466 人准备参加社会实践活动,现已预备了 49 座和 37 座两种客车共 10 辆,刚好坐满.设
3、 49 座客车 辆,37 座客车 辆,根据题意可列出方程组( )xyA. B. C. D.A.1049376xyB.1037496xyC.4693710xyD.4637910xy9.如图,点 A,B 在反比例函数 的图象上,点 C, D 在反比例函数()x的图象上,AC/BD/ 轴,已知点 A,B 的横坐标分别为 1,2,OAC 与(0)kyxyABD 的面积之和为 ,则 的值为( )32kA. 4 B. 3 C. 2 D. 3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理
4、,如图所示的矩形由两个这样的图形拼成,若 , ,则该矩形的面积为( 3a4b)A. 20 B. 24 C. 94D. 532卷 II二、填空题(本题有 6 小题,每小题 5 分,共 30 分.)11.分解因式: .25a12.已知扇形的弧长为 2 ,圆心角为 60,则它的半径为 .13.一组数据 1,3,2,7, ,2,3 的平均数是 3,则该组数据的众数为 .x14.不等式组 的解是 .02615.如图,直线 与 轴、 轴分别交于 A,B 两点,C 是34yxyOB 的中点,D 是 AB 上一点,四边形 OEDC 是菱形,则OAE 的面积为 .16.小明发现相机快门打开过程中,光圈大小变化如
5、图 1 所示,于是他绘制了如图 2 所示的图形.图 2 中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若 PQ 所在的直线经过点 M,PB=5cm,小正六边形的面积为 cm2,则该圆的半径为 cm.493三、解答题(本题有 8 小题,共 80 分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题 10 分)(1)计算: 20()7(1)(2)化简: 2()4()m18.(本题 8 分)如图,在四边形 ABCD 中,E 是 AB 的中点,AD/EC,AED=B.(1)求证:AEDEBC.(2)当 AB=6 时,求 CD 的长.19.(本题 8 分)现有甲、乙、丙等
6、多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营 150 家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的 20%,求甲公司需要增设的蛋糕店数量 .20.(本题 8 分)如图,P,Q 是方格纸中的两格点,请按要求画出以 PQ 为对角线的格点四边形.(1)在图 1 中画出一个面积最小的 PAQB.(2)在图 2 中画出一个四边形 PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线 CD 由线段 PQ 以某一格
7、点为旋转中心旋转得到.注:图 1,图 2 在答题纸上.21.(本题 10 分)如图,抛物线 交 轴正半轴于点 A,直线 经过抛物线2(0)yaxbx2yx的顶点 M.已知该抛物线的对称轴为直线 ,交 轴于点 B.(1)求 , 的值.ab(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接 OP,BP.设点 P 的横坐标为 ,OBP 的面积为 ,记 .求 关于 的函mSKm数表达式及 的范围.K22.(本题 10 分)如图,D 是ABC 的 BC 边上一点,连接 AD,作ABD的外接圆,将ADC 沿直线 AD 折叠,点 C 的对应点 E 落在上.(1)求证:AE=AB.(2)若CAB=9
8、0,cosADB= ,BE=2 ,求 BC 的长.1323.(本题 12 分)温州某企业安排 65 名工人生产甲、乙两种产品,每人每天生产 2 件甲或 1 件乙,甲产品每件可获利 15 元.根据市场需求和生产经验,乙产品每天产量不少于 5 件,当每天生产 5 件时,每件可获利 120 元,每增加 1 件,当天平均每件获利减少 2 元.设每天安排 人生产乙产品.x(1)根据信息填表产品种类 每天工人数(人) 每天产量(件) 每件产品可获利润(元)甲 15乙 xx(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多 550 元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增
9、加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产 1 件丙(每人每天只能生产一件产品),丙产品每件可获利 30 元,求每天生产三种产品可获得的总利润 (元)的最大值及相应的 值.Wx24. (本题 14 分)如图,已知 P 为锐角MAN 内部一点,过点 P 作 PBAM 于点 B,PCAN 于点 C,以 PB 为直径作 O,交直线 CP 于点 D,连接 AP,BD,AP 交O 于点 E.(1)求证:BPD=BAC.(2)连接 EB,ED,当 tanMAN=2,AB=时,在点 P 的整个运动过程中 .若BDE=45 ,求 PD 的长.若BED 为等腰三角形,求所有满足条件的 BD 的长.(2)连接 OC,EC,OC 交 AP 于点 F,当 tanMAN=1,OC/BE 时,记OFP 的面积为 S1,CFE 的面积为 S2,请写出 的值.12