【大师珍藏】高考理科数学一轮单元训练金卷:第二单元 函数的概念及其性质(B卷)含答案

上传人:可** 文档编号:57186 上传时间:2019-04-14 格式:DOC 页数:11 大小:284.49KB
下载 相关 举报
【大师珍藏】高考理科数学一轮单元训练金卷:第二单元 函数的概念及其性质(B卷)含答案_第1页
第1页 / 共11页
【大师珍藏】高考理科数学一轮单元训练金卷:第二单元 函数的概念及其性质(B卷)含答案_第2页
第2页 / 共11页
【大师珍藏】高考理科数学一轮单元训练金卷:第二单元 函数的概念及其性质(B卷)含答案_第3页
第3页 / 共11页
【大师珍藏】高考理科数学一轮单元训练金卷:第二单元 函数的概念及其性质(B卷)含答案_第4页
第4页 / 共11页
【大师珍藏】高考理科数学一轮单元训练金卷:第二单元 函数的概念及其性质(B卷)含答案_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、一轮单元训练金卷高三数学卷(B)第 二 单 元 函 数 的 概 念 及 其 性 质注 意 事 项 :1 答 题 前 , 先 将 自 己 的 姓 名 、 准 考 证 号 填 写 在 试 题 卷 和 答 题 卡 上 , 并 将 准 考 证 号 条 形 码 粘贴 在 答 题 卡 上 的 指 定 位 置 。2 选 择 题 的 作 答 : 每 小 题 选 出 答 案 后 , 用 2B 铅 笔 把 答 题 卡 上 对 应 题 目 的 答 案 标 号 涂 黑 ,写 在 试 题 卷 、 草 稿 纸 和 答 题 卡 上 的 非 答 题 区 域 均 无 效 。3 非 选 择 题 的 作 答 : 用 签 字 笔 直

2、 接 答 在 答 题 卡 上 对 应 的 答 题 区 域 内 。 写 在 试 题 卷 、 草 稿 纸和 答 题 卡 上 的 非 答 题 区 域 均 无 效 。4 考 试 结 束 后 , 请 将 本 试 题 卷 和 答 题 卡 一 并 上 交 。一、选择题(本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1函数 1lnxy的定义域为( )A 0,B 1,C ,1,D 0,2已知函数 fx为奇函数,且当 0x时, 2fx,则 1f( )A B0 C1 D23函数 21yx的值域是( )A 7,4B 70,4C 74D 7,44某学生离家去学校

3、,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程在图中,纵轴表示离学校的距离,横轴表示出发后的时间,则四个图形中较符合该学生走法的是( )5已知定义在 R上的函数 fx为偶函数,且满足 5fxf,若 24f, 62f,则74ff( )A2 B4 C 2D 46若 2,xff,则 3=f( ) A2 B8 C 18D 127函数21xy的值域为( )A 1,3B ,3C 1,3D 3,48设 fx为定义在 R上的奇函数,当 0x时, 2xfm(为常数) ,则 2f( )A4 B6 C 4D59已知函数 yfx是偶函数, 2yfx在 0,上单调递减,则( )A 012fffB 12fffC

4、0fff D 20fff10若定义在 R上的函数 x满足:对任意 1x, 2R,有 1212xfxf,则下列说法一定正确的是( )A fx为奇函数 B fx为偶函数C 1f为奇函数 D 1f为偶函数11已知定义在 R的函数 fx是偶函数,且 2fxf,若 fx在区间 1,2上是减函数,则fx( )A在区间 2,1上是增函数,在区间 3,4上是增函数B在区间 ,上是增函数,在区间 ,上是减函数C在区间 2,1上是减函数,在区间 3,4上是增函数D在区间 2,1上是减函数,在区间 3,4上是减函数12定义在 R上的偶函数 yfx在 0,上递减,且 102f,则满足 14log0fx的 的集合为(

5、)A 2,B 10,2C 10,2,D 1,2二、填空题(本大题有 4 小题,每小题 5 分,共 20 分请把答案填在题中横线上)13若函数 1axf是奇函数,则实数 a的值为_14已知 2,则函数 fx的解析式为_15已知函数 fx的值域为 34,89,则函数 12yffx的值域为_16设函数 f是定义在 R上的偶函数,且对任意的 R恒有 1ffx,已知当0,1x时, 12xf;则2 是函数 fx的周期;函数 fx在 (,2)上是减函数,在(2,3)是上是增函数;函数 ()f的最大值是 1,最小值是 0;当 3,4时, 31()2xf;其中所有正确命题的序号是_三、解答题(本大题有 6 小题

6、,共 70 分解答应写出文字说明、证明过程或演算步骤)17 (10 分)讨论函数 ()(0)afx的单调性18 (12 分)设直线 1x是函数 )(xf的图象的一条对称轴,对于任意 xR, )()2(xff,当 1时, 3)(f(1)证明:函数 x是奇函数;(2)当 34,k()Z时,求函数 )(xf的解析式19 (12 分) 中华人民共和国个人所得税规定,公民月工资、薪金所得不超过 3500 元的部分不纳税,超过 3500 元的部分为全月税所得额,此项税款按下表分段累计计算:全月应纳税所得额 税率不超过 1500 元的部分 3%超过 1500 元至 4500 元的部分 10超过 4500 元

7、至 9000 元的部分 2(1)已知张先生的月工资,薪金所得为 10000 元,问他当月应缴纳多少个人所得税?(2)设王先生的月工资,薪金所得为 ,当月应缴纳个人所得税为 元,写出 与 的函数关系xyx式;(3)已知王先生一月份应缴纳个人所得税为 303 元,那么他当月的工资、薪金所得为多少?20 (12 分)设函数 e()1xaf()R(1)若 )(xf为 R上的奇函数,求 的值;(2)若 在 上为减函数,求 a的取值范围21 (12 分)定义在 R上的增函数 )(xfy对任意 , yR都有 )()(yfxyf(1)求证: )(xf为奇函数;(2)若对任意 ,都有 0)193()(xxfkf

8、 恒成立,求实数 k的取值范围22 (12 分)设函数 xf2)(, 2)(axg( R),对于 2,1x,总存在2,1x,使 )(xgf成立,求实数 a的取值范围一轮单元训练金卷高三数学卷答案(B)第 二 单 元 函 数 的 概 念 及 其 性 质一、选择题(本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1 【答案】D【解析】 函数 1lnxy, l0x,解得 0x,且 1,所以函数 lx的定义域为 ,1,,故选 D2 【答案】A【解析】 12ff,故选 A3 【答案】D【解析】函数 xy2在 21,为单调递减函数,当 21x,时 4

9、7miny,无最大值,所以值域为 7,4,故选 D4 【答案】D【解析】纵轴表示离学校的距离,横轴表示出发后的时间,当 0t时,纵坐标表示家到学校的距离,不能为零,故排除 A, C;又由于一开始是跑步,后来是走完余下的路,刚开始图象下降的较快,后来下降的较慢,故选 D5 【答案】A【解析】 5fxf, 55fxfxfx,又 f为偶函数, fxf,即函数 f是周期为 5 的周期函数, 7421212642fffffff,故选 A6 【答案】C【解析】由题设得, 313 128ffffff,故选C7 【答案】B【解析】21xy的定义域为 R,方程 2110yxy有解,当 1时, 0,故 可取 1,

10、当 y时, 4,即 23y,解得 3,函数的值域为 ,3,故选 B8 【答案】C【解析】 fx为定义在 R上的奇函数, 0f,即 0m, 1,故当 0时, 321x, 2341f, fx为奇函数, ff,故选 C9 【答案】A【解析】 2yfx在 0,上单调递减, yfx在 2,0上单调递减,又函数 f是偶函数, yfx在 0,2单调递增,则 12ff,又 1ff, 01fff,故选 A10 【答案】C【解析】令 x,则 2ff, 01f,则 01f,则 01fffxf,则 fxf,即 ()1()fxfx, 1fx为奇函数,故选 C11 【答案】B【解析】函数 fx是偶函数,而区间 2,与区间

11、 1,2关于原点对称,且 fx在区间 1,2上是减函数,函数 f在区间 ,1上是增函数,又 fxf,即函数 f是周期为 2 的周期函数,函数 fx在区间 3,4上的单调性与在区间 1,2上的单调性一致,即函数 fx在区间3,4上是减函数,故选 B12 【答案】C【解析】由偶函数 yfx在 0,上递减,且 102f得,函数 yfx在 ,0上单调递增,且 102f,由 14logf得, 14logx或 14logx,解得 102或 ,故选 C二、填空题(本大题有 4 小题,每小题 5 分,共 20 分请把答案填在题中横线上)13 【答案】 1【解析】 211axf ax, 1fxa,函数 是奇函数

12、, 20ff, 14 【答案】 21fx【解析】 2 211fxxx, 1x,将 1x视为自变量,则 2f15 【答案】 7,98【解析】函数 fx的值域为 34,89, 49fx,则 1124fx, 1123f;令 2tfx,则 ,32t,且 ft; 2221yttt, 1,t,由二次函数的图象知,当 1,32t时, 21yt单调递增;2min1739y,2max78,故函数 fxf的值域为 ,916 【答案】【解析】由 (1)()ff得, (2)(1)(1)(fxffxfx, 2是函数 x的一个周期;函数 是定义在 R 上的偶函数,且当 0,时, 1()2xf,函数 ()fx的简图如图所示

13、,由图可知,也正确三、解答题(本大题有 6 小题,共 70 分解答应写出文字说明、证明过程或演算步骤)17 【答案】见解析【解析】函数 ()afx的定义域为 (,0)(,), ()f fx,函数 fx为奇函数先讨论 x在 (0,上的单调性;设 12,则 12121212)()aaffxxx,当 120xa时,恒有 12, 12()0ff,故函数 ()f在 ,上是减函数;当 12ax时,恒有 12ax, 12()0fxf,故函数 ()f在 ,)上是增函数;函数 x为奇函数,函数 ()fx分别在 (,)a, (,)上是增函数;在 ,0)a, (,上是减函数18 【答案】 (1)见解析;(2) 3)

14、24()()kxkxff , ()kZ【解析】 (1)直线 x是函数 的图象的一条对称轴, xff又 )()(fxf, )(xff函数 )(xf是奇函数(2)设 3,,则 1,2x, 2, )()(fxf 3)(, 4)(xf(f,函数 )(xf是以 为周期的周期函数设 3,1k)(Z,则 3,14kx, 324()xff , Z19 【答案】 (1)745 元;(2) 0,355%041,838212xxyx;(3)7580 元【解析】 (1)赵先生应交税为 (元) 150010745(2) 与 的函数关系式为:yx,3350%41,508082125xxx(3)李先生一月份缴纳个人所得税为

15、 303 元,故必有 ,5080x从而 ,解得 元,04501%x78x所以李先生当月的工资、薪金所得为 7580 元20 【答案】 (1) a;(2) 【解析】 (1) e()xf为 R上的奇函数,0e()1af, 1a当 a时, ()exf, 1e()xf()exx)(f (xff当 a的值为 时, f为 上的奇函数(2)任取 1, 2R,设 1x2,则 )(21xff12exxa12211(e)(e)xxxxaa2121(e)()exx211()ex,)(xf在 R上为减函数, )(21xff,即211()e)0xa12, 21ex, 1e0x, 2ex , a的取值范围为 a21 【答

16、案】 (1)见解析;(2) k【解析】 (1)令 0yx,得 )0()(ff,即 0)(f令 y,得 )(xf,又 , )(xf对任意 R都成立 )(f为奇函数(2) 为奇函数, 0)193()(xxfkf )193()(xxfkf)(xf为 R上的增函数, 139xxk 13xk13213xx 2, 22 【答案】见解析【解析】由题意,函数 xf)(2在 2,1上的值域是函数 2)(axg在 ,1上值域的子集易知 0a函数 xf2)(1)(2在 ,上的值域是 3,当 0a时,函数 g在 x上的值域为 2a,满足 213,解得 a当 0a时,函数 2)(xg在 ,1上的值域为 2,a,满足 231,解得 3a综上所述,实数 的取值范围为 2或 3a

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 数学高考 > 一轮复习