2017-2018学年辽宁省盘锦市双台子区八年级下期末数学试卷(含答案解析)

上传人:可** 文档编号:49610 上传时间:2019-03-08 格式:DOC 页数:20 大小:363KB
下载 相关 举报
2017-2018学年辽宁省盘锦市双台子区八年级下期末数学试卷(含答案解析)_第1页
第1页 / 共20页
2017-2018学年辽宁省盘锦市双台子区八年级下期末数学试卷(含答案解析)_第2页
第2页 / 共20页
2017-2018学年辽宁省盘锦市双台子区八年级下期末数学试卷(含答案解析)_第3页
第3页 / 共20页
2017-2018学年辽宁省盘锦市双台子区八年级下期末数学试卷(含答案解析)_第4页
第4页 / 共20页
2017-2018学年辽宁省盘锦市双台子区八年级下期末数学试卷(含答案解析)_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、2017-2018 学年辽宁省盘锦市双台子区八年级(下)期末数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案填在答题纸的表格中(每小题 3 分,共 30 分)1下列二次根式中,属于最简二次根式的是( )A B C D2下列四组线段中,不能作为直角三角形三条边的是( )A3cm,4cm,5cm B2cm,2cm ,2 cmC2cm ,5cm,6cm D5cm,12cm,13cm3平行四边形所具有的性质是( )A对角线相等B邻边互相垂直C每条对角线平分一组对角D两组对边分别相等4下列各图中,不是函数图象的是( )A BC D5某校对九年级 6 个班学生平均一周的课外阅读时间

2、进行了统计,分别为(单位:h):3.5,4,3.5,5,5,3.5这组数据的众数是( )A3 B3.5 C4 D56若代数式 有意义,则实数 x 的取值范围是( )Ax1 Bx2 Cx1 且 x2 Dx 1 且 x27一次函数 y3x +5 的图象不经过的象限是( )A第一象限 B第二象限 C第三象限 D第四象限8如图,菱形 ABCD 的对角线 AC6,BD 8,则 ABCD 的周长为( )A4 B4 C20 D409如图,在ABC 中,三边 a,b,c 的大小关系是( )Aabc Bcab Ccba Dbac10如图,在矩形 ABCD 中,AB8,BC4,将矩形沿 AC 折叠,点 D 落在点

3、 D处,则重叠部分AFC 的面积为( )A6 B8 C10 D12二填空题(每小题 3 分,共 24 分)11计算: 12将直线 y4x +3 向下平移 4 个单位,得到的直线解析式是 13若已知 a,b 为实数,且 + b+4,则 a+b 14函数 ykx+b(k0)的图象如图所示,则不等式 kx+b0 的解集为 15如图,在 RtABC 中,C90,AB 10cm ,D 为 AB 的中点,则 CD cm16在正方形 ABCD 中,E 在 BC 上,BE2,CE 1,P 是 BD 上的动点,则 PE 和 PC 的长度之和最小是 17商店某天销售了 11 件衬衫,其领口尺寸统计如下表:领口尺寸

4、(单位:cm)38 39 40 41 42件数 1 4 3 1 2则这 11 件衬衫领口尺寸的众数是 cm,中位数是 cm 18若 a11 ,a 21 ,a 31 ,;则 a2013 的值为 (用含 m 的代数式表示)三解答题(19 题每题 3 分,20-24 每题 8 分,25-26 每题 10 分)19计算:(1)( 2) 2+5 9(2) 20如图,四边形 ABCD 中,ADC90,AD4cm ,CD3cm,AB13cm ,BC 12cm ,求这个四边形的面积?21如图,在平行四边形中,AEBC 于 E,AFCD 于 F,EAF60,BE2,DF3,求AB, BC 的长及平行四边形 AB

5、CD 的面积?22已知 y2 与 x+1 成正比例函数关系,且 x2 时, y6(1)写出 y 与 x 之间的函数关系式;(2)求当 x3 时,y 的值;(3)求当 y4 时,x 的值23如图,过正方形 ABCD 的顶点 D 作 DEAC 交 BC 的延长线于点 E(1)判断四边形 ACED 的形状,并说明理由;(2)若 BD8cm ,求线段 BE 的长24我国是世界上严重缺水的国家之一为了倡导“节约用水从我做起”,小刚在他所在班的 50 名同学中,随机调查了 10 名同学家庭中一年的月均用水量单位:t,并将调查结果绘成了如下的条形统计图:(1)求这 10 个样本数据的平均数、众数和中位数;(

6、2)根据样本数据,估计小刚所在班 50 名同学家庭中月均用水量不超过 7t 的约有多少户?25国庆期间,为了满足百姓的消费需求,某商店计划用 170000 元购进一批家电,这批家电的进价和售价如表:类别 彩电 冰箱 洗衣机进价(元/台) 2000 1600 1000售价(元/台) 2300 1800 1100若在现有资金允许的范围内,购买表中三类家电共 100 台,其中彩电台数是冰箱台数的 2 倍,设该商店购买冰箱 x 台(1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?26如图(1),在 RtABC,ACB90,分别以 AB、

7、BC 为一边向外作正方形ABFG、BCED,连结 AD、 CF,AD 与 CF 交于点 M(1)求证:ABDFBC;(2)如图(2),求证:AM 2+MF2AF 22017-2018 学年辽宁省盘锦市双台子区八年级(下)期末数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案填在答题纸的表格中(每小题 3 分,共 30 分)1下列二次根式中,属于最简二次根式的是( )A B C D【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【解答】解:A、被开方数含分母,故 A 错

8、误;B、被开方数含分母,故 B 错误;C、被开方数含能开得尽方的因数,故 C 错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故 D 正确;故选:D【点评】本题考查最简二次根式的定义,被开方数不含分母;被开方数不含能开得尽方的因数或因式2下列四组线段中,不能作为直角三角形三条边的是( )A3cm,4cm,5cm B2cm,2cm ,2 cmC2cm ,5cm,6cm D5cm,12cm,13cm【分析】欲判断是否为直角三角形,需验证两小边的平方和是否等于最长边的平方【解答】解:A、3 2+425 2,能构成直角三角形,不符合题意;B、2 2+22(2 ) 2,能构成直角三角形,

9、不符合题意;C、2 2+526 2,不能构成直角三角形,符合题意;D、5 2+12213 2,能构成直角三角形,不符合题意故选:C【点评】此题主要考查了勾股定理的逆定理:已知ABC 的三边满足 a2+b2c 2,则ABC 是直角三角形3平行四边形所具有的性质是( )A对角线相等B邻边互相垂直C每条对角线平分一组对角D两组对边分别相等【分析】根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,继而即可得出答案【解答】解:平行四边形的对角相等,对角线互相平分,对边平行且相等故选:D【点评】此题考查了平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等;熟记

10、平行四边形的性质是关键4下列各图中,不是函数图象的是( )A BC D【分析】设在一个变化过程中有两个变量 x 与 y,对于 x 的每一个确定的值,y 都有唯一的值与其对应,那么就说 y 是 x 的函数,x 是自变量根据函数的定义和函数图象可以判断哪个选项中的图象不是函数图象【解答】解:由函数的定义可知,对于每一个自变量的 x 的取值,都有唯一的 y 值与其对应,选项 A 中当 x 取一个正数时,有两个 y 值与其对应,故选项 A 中的图象不是函数图象,而其它选项中,对于每一个自变量的 x 的取值,都有唯一的 y 值与其对应,故是函数图象,故选:A【点评】本题考查函数图象,解答本题的关键是明确

11、函数的定义,利用“一一对应”进行判断5某校对九年级 6 个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.5,4,3.5,5,5,3.5这组数据的众数是( )A3 B3.5 C4 D5【分析】一组数据中出现次数最多的数据叫做众数,依此求解即可【解答】解:在这一组数据中 3.5 出现了 3 次,次数最多,故众数是 3.5故选:B【点评】本题考查了众数的定义,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据6若代数式 有意义,则实数 x 的取值范围是( )Ax1 Bx2 Cx1 且 x2 Dx 1 且 x2【分析】根据被开方数大于

12、等于 0,分母不等于 0 列不等式求解即可【解答】解:由题意得,x+10 且(x2) 20,解得 x1 且 x2故选:D【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义7一次函数 y3x +5 的图象不经过的象限是( )A第一象限 B第二象限 C第三象限 D第四象限【分析】一次项系数30,则图象经过二、四象限;常数项 50,则图象还过第一象限【解答】解:30,图象经过二、四象限;50,直线与 y 轴的交点在 y 轴的正半轴上,图象还过第一象限所以一次函数 y3x +5 的图象经过一、二、四象限,不经过第三象限故选:C【点评】一次函数的图象经过第几象限

13、,取决于 x 的系数及常数是大于 0 或是小于 0可借助草图分析解答8如图,菱形 ABCD 的对角线 AC6,BD 8,则 ABCD 的周长为( )A4 B4 C20 D40【分析】由菱形的性质可求得 OA、OB ,在 RtAOB 中利用勾股定理可求得 AB,则可求得其周长【解答】解:四边形 ABCD 为菱形,AO AC3,BO BD4,且 ACBD,AB 5,菱形 ABCD 的周长4AB 20,故选:C【点评】本题主要考查菱形的性质,掌握菱形的对角线互相垂直平分是解题的关键9如图,在ABC 中,三边 a,b,c 的大小关系是( )Aabc Bcab Ccba Dbac【分析】先分析出 a、b

14、、c 三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可【解答】解:根据勾股定理,得 a ;b ;c 51013,bac故选:D【点评】本题考查了勾股定理及比较无理数的大小,属中学阶段的基础题目10如图,在矩形 ABCD 中,AB8,BC4,将矩形沿 AC 折叠,点 D 落在点 D处,则重叠部分AFC 的面积为( )A6 B8 C10 D12【分析】因为 BC 为 AF 边上的高,要求AFC 的面积,求得 AF 即可,求证AFDCFB,得BF DF,设 DFx,则在 RtAFD中,根据勾股定理求 x,于是得到 AFABBF,即可得到结果【解答】解:易证AFDCFB,DFBF,设 D

15、Fx,则 AF8x ,在 Rt AFD中,(8x) 2x 2+42,解之得:x3,AFABFB835,S AFC AFBC10故选:C【点评】本题考查了翻折变换折叠问题,勾股定理的正确运用,本题中设 DFx,根据直角三角形 AFD中运用勾股定理求 x 是解题的关键二填空题(每小题 3 分,共 24 分)11计算: 【分析】先化简 2 ,再合并同类二次根式即可【解答】解: 2 故答案为: 【点评】本题主要考查了二次根式的加减,属于基础题型12将直线 y4x +3 向下平移 4 个单位,得到的直线解析式是 y4x1 【分析】根据上加下减的法则可得出平移后的函数解析式【解答】解:将直线 y4x+3

16、向下平移 4 个单位得到直线 l,则直线 l 的解析式为:y 4x+34,即 y4x1故答案是:y4x 1【点评】本题考查了一次函数图象与几何变换的知识,难度不大,掌握上加下减的法则是关键13若已知 a,b 为实数,且 + b+4,则 a+b 1 【分析】根据二次根式有意义的条件可得 ,解不等式组可得 a5,进而可得 b 的值,然后可得答案【解答】解:由题意得: ,解得:a5,则 b+40,b4,a+b541,故答案为:1【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数14函数 ykx+b(k0)的图象如图所示,则不等式 kx+b0 的解集为 x1 【分析】由

17、图知:当 x1 时,y0;当 x1 时,y0;因此当 y0 时,x1;由此可得解【解答】解:根据图示知:一次函数 ykx+b 的图象 x 轴、y 轴交于点(1,0),(0,2);即当 x1 时,函数值 y 的范围是 y0;因而当不等式 kx+b0 时,x 的取值范围是 x1故答案为:x1【点评】本题主要考查的是关于一次函数与一元一次不等式的题目,在解题时,认真体会一次函数与一元一次不等式(组)之间的内在联系理解一次函数的增减性是解决本题的关键15如图,在 RtABC 中,C90,AB 10cm ,D 为 AB 的中点,则 CD 5 cm【分析】此题直接根据直角三角形中斜边上的中线等于斜边的一半

18、就可以求出 CD【解答】解:在 RtABC 中,C90,AB 10cm,D 为 AB 的中点,CD AB5cm 故答案为:5【点评】本题主要考查了直角三角形的性质:斜边上的中线等于斜边的一半16在正方形 ABCD 中,E 在 BC 上,BE2,CE 1,P 是 BD 上的动点,则 PE 和 PC 的长度之和最小是 【分析】连接 AC、AE,由正方形的性质可知 A、C 关于直线 BD 对称,故 AE 的长即为 PE+PC 的最小值,再根据勾股定理求出 AE 的长即可【解答】解:如图所示:连接 AC、AE ,四边形 ABCD 是正方形,A、C 关于直线 BD 对称,AE 的长即为 PE+PC 的最

19、小值,BE2,CE 1,BCAB2+13,在 Rt ABE 中,AE ,PE 与 PC 的和的最小值为 故答案为: 【点评】本题考查的是轴对称最短路线问题及正方形的性质,熟知“两点之间,线段最短”是解答此题的关键17商店某天销售了 11 件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm)38 39 40 41 42件数 1 4 3 1 2则这 11 件衬衫领口尺寸的众数是 39 cm,中位数是 40 cm 【分析】根据中位数的定义与众数的定义,结合图表信息解答【解答】解:同一尺寸最多的是 39cm,共有 4 件,所以,众数是 39cm,11 件衬衫按照尺寸从小到大排列,第 6 件的尺寸是 4

20、0cm,所以中位数是 40cm故答案为:39,40【点评】本题考查了中位数与众数,确定中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数;众数是出现次数最多的数据,众数有时不止一个18若 a11 ,a 21 ,a 31 ,;则 a2013 的值为 m (用含 m 的代数式表示)【分析】把 a1 代入求出 a2,把 a2 代入求出 a3,依此类推得到一般性规律,即可确定出所求式子的值【解答】解:a11 ,a 21 1 1 ,a 31 1+m 1m,a 41,20133671

21、,a 2013m ,故答案为:m【点评】此题考查了分式的混合运算,弄清题中的规律是解本题的关键三解答题(19 题每题 3 分,20-24 每题 8 分,25-26 每题 10 分)19计算:(1)( 2) 2+5 9(2) 【分析】(1)先利用完全平方公式和二次根式的除法法则运算,然后化简后合并即可;(2)根据二次根式的乘除法则运算【解答】解:(1)原式54 +4+5 954 +4+5 9 ;(2)原式 【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途

22、径,往往能事半功倍20如图,四边形 ABCD 中,ADC90,AD4cm ,CD3cm,AB13cm ,BC 12cm ,求这个四边形的面积?【分析】连接 AC,利用勾股定理求出 AC 的长,在ABC 中,判断它的形状,并求出它的面积,最后求出四边形 ABCD 的面积【解答】解:连接 AC,AD4cm,CD 3cm,ADC90,AC 5(cm)S ACD CDAD6(cm 2)在ABC 中,5 2+12213 2 即 AC2+BC2AB 2,ABC 为直角三角形,即ACB 90,S ABC ACBC30(cm 2)S 四边形 ABCDS ABC S ACD30624(cm 2)答:四边形 AB

23、CD 的面积为 24cm2【点评】本题考查了勾股定理、勾股定理的逆定理及三角形的面积公式掌握勾股定理及其逆定理,连接 AC,说明ABC 是直角三角形是解决本题的关键21如图,在平行四边形中,AEBC 于 E,AFCD 于 F,EAF60,BE2,DF3,求AB, BC 的长及平行四边形 ABCD 的面积?【分析】根据 AEBC 于 E,AFCD 于 F,EAF60,可以得到C 的度数,由四边形 ABCD是平行四边形可以得到B、D 的度数,然后根据解直角三角形的相关知识可以求得 AB、BC的长,根据特殊角的三角函数可以求得 AE 的长,由平行四边形的面积等于底乘以高,可以求得四边形 ABCD 的

24、面积【解答】解:AEBC 于 E,AFCD 于 F,AECAFC90EAF 60,C 360AECAFC EAF120,B60BAE30,AB2BE4;cmDB60,DAF30AD2DF 6cmBCAD6cm在 Rt ADF 中,AF 3 (cm),ABCD 的面积CDAF43 12 (cm 2)【点评】本题考查平行四边形的性质、平行四边形的面积,30角所对的直角边和斜边的关系,解题的关键是明确题意,找出所求问题需要的条件利用数形结合的思想解答问题22已知 y2 与 x+1 成正比例函数关系,且 x2 时, y6(1)写出 y 与 x 之间的函数关系式;(2)求当 x3 时,y 的值;(3)求

25、当 y4 时,x 的值【分析】(1)根据 y2 与 x+1 成正比例关系设出函数的解析式,再把当 x2 时,y6 代入函数解析式即可求出 k 的值,进而求出 y 与 x 之间的函数解析式(2)根据(1)中所求函数解析式,将 x3 代入其中,求得 y 值;(3)利用(1)中所求函数解析式,将 y4 代入其中,求得 x 值【解答】解:(1)依题意得:设 y2k(x +1)将 x2,y6 代入:得 k 4所以,y4x2(2)由(1)知,y4x 2,当 x3 时,y (4)(3)210,即 y10 ;(3)由(1)知,y4x 2,当 y4 时,4(4)x2,解得,x 【点评】本题考查了待定系数法求一次

26、函数的解析式、函数值利用待定系数法求一次函数的解析式,通常先设出一次函数的关系式 ykx+b(k0),将已知两点的坐标代入求出 k、b 的值,再根据一次函数的性质求解23如图,过正方形 ABCD 的顶点 D 作 DEAC 交 BC 的延长线于点 E(1)判断四边形 ACED 的形状,并说明理由;(2)若 BD8cm ,求线段 BE 的长【分析】(1)根据正方形的对边互相平行可得 ADBC,即为 ADCE,然后根据两组对边互相平行的四边形是平行四边形解答;(2)根据正方形的四条边都相等,平行四边形的对边相等可得 BCADCE,再根据正方形的边长等于对角线的 倍求出 BC,然后求出 BE 即可【解

27、答】解:(1)四边形 ACED 是平行四边形理由如下:四边形 ABCD 是正方形,ADBC,即 ADCE,DEAC,四边形 ACED 是平行四边形;(2)由(1)知,BCADCECD ,BD8cm,BC BD 84 cm,BEBC+CE4 +4 8 cm【点评】本题考查了正方形的性质,平行四边形的判定与性质,比较简单,熟练掌握各图形的性质是解题的关键24我国是世界上严重缺水的国家之一为了倡导“节约用水从我做起”,小刚在他所在班的 50 名同学中,随机调查了 10 名同学家庭中一年的月均用水量单位:t,并将调查结果绘成了如下的条形统计图:(1)求这 10 个样本数据的平均数、众数和中位数;(2)

28、根据样本数据,估计小刚所在班 50 名同学家庭中月均用水量不超过 7t 的约有多少户?【分析】(1)根据条形统计图,即可知道每一名同学家庭中一年的月均用水量再根据加权平均数的计算方法、中位数和众数的概念进行求解;(2)首先计算样本中家庭月均用水量不超过 7t 的用户所占的百分比,再进一步估计总体【解答】解:(1)观察条形图,可知这组样本数据的平均数是:这组样本数据的平均数为 6.8(t)在这组样本数据中,6.5 出现了 4 次,出现的次数最多,这组数据的众数是 6.5(t)将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是 6.5,有 ,这组数据的中位数是 6.5(t)(2)10 户

29、中月均用水量不超过 7t 的有 7 户,有 50 35根据样本数据,可以估计出小刚所在班 50 名同学家庭中月均用水量不超过 7t 的约有 35 户【点评】本题考查的是条形统计图的运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据掌握平均数、中位数和众数的计算方法25国庆期间,为了满足百姓的消费需求,某商店计划用 170000 元购进一批家电,这批家电的进价和售价如表:类别 彩电 冰箱 洗衣机进价(元/台) 2000 1600 1000售价(元/台) 2300 1800 1100若在现有资金允许的范围内,购买表中三类家电共 100 台,其中彩电台数是

30、冰箱台数的 2 倍,设该商店购买冰箱 x 台(1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?【分析】(1)根据表格中三种家电的进价表示三种家电的总进价,小于等于 170000 元列出关于 x的不等式,根据 x 为正整数,即可解答;(2)设商店销售完这批家电后获得的利润为 y 元,则 y(23002000)2x+(18001600)x+( 11001000)(1003x)500x +10000,结合(1)中 x 的取值范围,利用一次函数的性质即可解答【解答】解:(1)根据题意,得:20002x+1600x+1000(1003x)

31、170000,解得:x ,x 为正整数,x 至多为 26,答:商店至多可以购买冰箱 26 台(2)设商店销售完这批家电后获得的利润为 y 元,则 y(23002000)2x +(18001600)x +(11001000)(1003x)500x+10000,k5000,y 随 x 的增大而增大,x 且 x 为正整数,当 x26 时,y 有最大值,最大值为:50026+1000023000,答:购买冰箱 26 台时,能使商店销售完这批家电后获得的利润最大,最大利润为 23000 元【点评】此题属于一次函数的综合题,涉及的知识有:一元一次不等式的应用,不等式解集中的正整数解,以及一次函数的图象与性

32、质,此类题常常以实际生活为情景,考查利润等热点问题,解答时要审清题中的等量关系及不等关系,从表格中提取有用的信息,达到解决问题的目的26如图(1),在 RtABC,ACB90,分别以 AB、BC 为一边向外作正方形ABFG、BCED,连结 AD、 CF,AD 与 CF 交于点 M(1)求证:ABDFBC;(2)如图(2),求证:AM 2+MF2AF 2【分析】(1)根据四边形 ABFG、BCED 是正方形得到两对边相等,一对直角相等,根据图形利用等式的性质得到一对角相等,利用 SAS 即可得到三角形全等;(2)根据全等三角形的性质和勾股定理即可得到结论【解答】解:(1)四边形 ABFG、BCED 是正方形,ABFB,CBDB,ABFCBD90,ABF +ABC CBD+ABC,即ABDCBF,在ABD 和FBC 中, ,ABDFBC(SAS);(2)ABDFBC ,BADBFC,AMF 180 BAD CNA180(BFC+BNF )1809090,AM 2+MF2 AF2【点评】此题考查了全等三角形的判定与性质,正方形的性质,勾股定理,熟练掌握全等三角形的判定定理是解题的关键

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 期末试卷 > 八年级下