湘教版八年级数学上《2.4线段的垂直平分线》课件

上传人:好样****8 文档编号:36652 上传时间:2018-12-11 格式:PPTX 页数:20 大小:209.92KB
下载 相关 举报
湘教版八年级数学上《2.4线段的垂直平分线》课件_第1页
第1页 / 共20页
湘教版八年级数学上《2.4线段的垂直平分线》课件_第2页
第2页 / 共20页
湘教版八年级数学上《2.4线段的垂直平分线》课件_第3页
第3页 / 共20页
湘教版八年级数学上《2.4线段的垂直平分线》课件_第4页
第4页 / 共20页
湘教版八年级数学上《2.4线段的垂直平分线》课件_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、2.4 线段的垂直平分线,如图,人字形屋顶的框架中,点A与点A关于线段CD所在的直线l 对称,问线段CD所在的直线l 与线段AA有什么关系?,新知探究,我们可以把人字形屋顶框架图进行简化得到下图.,已知点A与点A关于直线l 对称,如果沿直线l折叠,则点A与点A重合,AD=AD,1=2= 90,即直线l 既平分线段AA,又垂直线段AA.,l,A,A,D,2,1,(A),我们把垂直且平分一条线段的直线叫作这条线段的垂直平分线.,由上可知:线段是轴对称图形,线段的垂直平分线是它的对称轴.,新知归纳,如图,在线段AB的垂直平分线l 上任取一点P,连接PA,PB,线段PA,PB之间有什么关系?,新知探究

2、,作关于直线l 的轴反射(即沿直线l 对折),由于l 是线段AB的垂直平分线,因此点A与点B重合. 从而线段PA与线段PB重合,于是PA=PB.,线段垂直平分线上的点到线段两端的距离相等.,由此得出线段垂直平分线的性质定理:,新知归纳,我们知道线段垂直平分线上的点到线段两端的距离相等,反过来,如果已知一点P到线段AB两端的距离PA与PB相等,那么点P在线段AB的垂直平分线上吗?,疑问升级,(1)当点P在线段AB上时,,因为PA=PB,,所以点P为线段AB的中点,,显然此时点P在线段AB的垂直平分线上.,(2)当点P在线段AB外时,如下图所示.,因为PA=PB,,所以PAB是等腰三角形.,过顶点

3、P作PCAB,垂足为点C,,从而底边AB上的高PC也是底边AB上的中线.,即 PCAB,且AC=BC.,因此直线PC是线段AB的垂直平分线,,此时点P也在线段AB的垂直平分线上.,到线段两端距离相等的点在线段的垂直平分线上.,由此得到线段垂直平分线的性质定理的逆定理:,新知归纳,例 已知:如图,在ABC中,AB,BC的垂直平分线相交于点O,连接OA,OB,OC.求证:点O在AC的垂直平分线上.,证明 点O在线段AB的垂直平分线上,, OA=OB.,同理OB=OC., OA=OC., 点O在AC的垂直平分线上.,例题讲解,1. 如图,在ABC中,AB的垂直平分线分别交AB,BC于点D,E,B=3

4、0,BAC= 80, 求CAE的度数.,答:CAE=50.,随堂练习,随堂练习,2.已知:如图,点C,D是线段AB外的两点,且AC =BC,AD=BD,AB与CD相交于点O.求证:AO=BO.,证明: AC =BC,AD=BD,, CD为线段AB的垂直平分线.,又 AB与CD相交于点O,如图,已知线段AB,作线段AB的垂直平分线.,根据“到线段两端距离相等的点在线段的垂直平分线上”,要作线段AB的垂直平分线,关键是找出到线段AB两端距离相等的两点.,新知探究,因为线段AB的垂直平分线CD与线段AB的交点就是线段AB的中点,所以可以用这种方法作出线段的中点.,如何过一点P作已知直线l的垂线呢?,

5、由于两点确定一条直线, 因此我们可以通过在已知直线上作线段的垂直平分线来找出垂线上的另一点,从而确定已知直线的垂线.,新知探究,用尺规完成下列作图(只保留作图痕迹,不要求写出作法).1. 如图,在直线l上求作一点P,使PA= PB.,随堂练习,随堂练习,2. 如图,作出ABC的BC边上的高.,如图,在ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,BCE的周长等于18cm,则AC的长等于( ). A.6cm B.8cm C.10cm D.12cm,例,DE是AB的垂直平分线, AE=BE(线段垂直平分线上的点到线段两端点的距离相等). 又在BCE中, BE+CE+BC=18cm,BC=8cm, BE+CE=10cm. AC=AE+CE=BE+CE=10cm. 故应选择C.,C,例题讲解,解析:,谢 谢,

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 湘教版 > 八年级上册