2024年陕西省渭南市富平县中考数学全真模拟试卷(含答案)

上传人:雪**** 文档编号:256632 上传时间:2024-05-18 格式:DOCX 页数:22 大小:629.49KB
下载 相关 举报
2024年陕西省渭南市富平县中考数学全真模拟试卷(含答案)_第1页
第1页 / 共22页
2024年陕西省渭南市富平县中考数学全真模拟试卷(含答案)_第2页
第2页 / 共22页
2024年陕西省渭南市富平县中考数学全真模拟试卷(含答案)_第3页
第3页 / 共22页
2024年陕西省渭南市富平县中考数学全真模拟试卷(含答案)_第4页
第4页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、陕西省渭南市富平县2024届中考数学全真模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分)1分式的值为0,则x的取值为( )Ax=-3Bx=3Cx=-3或x=1Dx=3或x=-12对于一组统计数据1,1,6,5,1下列说法错误的是()A众数是1B平均数是4C方差是1.6D中位数是63如图,在平行四边形ABCD中,都不一定 成立的是()AO=CO;ACBD;ADBC;CAB=CADA和B和C和D和4如图是某几何体的三视图,下列判断正确的是( )A几何体是圆柱体,高为2B几何体是圆锥体,高为2C几何体是圆柱体,半径为2D几何体是圆锥体,直径为25如图,嘉淇同学拿20元钱正在和售货员对话

2、,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )A5元,2元B2元,5元C4.5元,1.5元D5.5元,2.5元6一元二次方程的根的情况是A有两个不相等的实数根B有两个相等的实数根C没有实数根D无法判断7若数a,b在数轴上的位置如图示,则()Aa+b0Bab0Cab0Dab08下列运算正确的是()Aa2a3=a6 Ba3+a2=a5 C(a2)4=a8 Da3a2=a9小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( )ABCD10如图,是反比例函数图象,阴影部分表示它与横纵坐标轴正半轴围成的

3、区域,在该区域内不包括边界的整数点个数是k,则抛物线向上平移k个单位后形成的图象是ABCD11如图1,等边ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形设点I为对称轴的交点,如图2,将这个图形的顶点A与等边DEF的顶点D重合,且ABDE,DE=2,将它沿等边DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是()A18B27CD4512估计1的值在()A1和2之间B2和3之间C3和4之间D4和5之间二、填空题:(本大题共6个小题,每小题4分,共24分)13

4、如图,直线 ab,直线 c 分别于 a,b 相交,1=50,2=130,则3 的度数为( )A50B80C100D13014不等式的解集是_15如图,RtABC中,ACB=90,A=15,AB的垂直平分线与AC交于点D,与AB交于点E,连接BD若AD=14,则BC的长为_16已知 ,是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足=1,则m的值是_17定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”根据上述定义,“距离坐标”是(1,2)的点的个数共有_个18据统计,今年无锡

5、鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为_人次三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知抛物线过点,求抛物线的解析式,并求出抛物线的顶点坐标.20(6分)如图,AB是O的直径,点C是的中点,连接AC并延长至点D,使CDAC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交O于点H,连接BH求证:BD是O的切线;(2)当OB2时,求BH的长21(6分)太原市志愿者服务平台旨在弘扬“奉献、关爱、互助、进步”的志愿服务精神,培育志思服务文化,推动太原市志愿服务的制度化、常态化,弘扬社会正能量,截止到2

6、018年5月9日16:00,在该平台注册的志愿组织数达2678个,志愿者人数达247951人,组织志愿活动19748次,累计志愿服务时间3889241小时,学校为了解共青团员志愿服务情况,调查小组根据平台数据进行了抽样问卷调查,过程如下:(1)收集、整理数据:从九年级随机抽取40名共青团员,将其志愿服务时间按如下方式分组(A:05小时;B:510小时;C:1015小时;D:1520小时;E:2025小时;F:2530小时,注:每组含最小值,不含最大值)得到这40名志愿者服务时间如下:B D E A C E D B F C D D D B E C D E E FA F F A D C D B D

7、 F C F D E C E E E C E并将上述数据整理在如下的频数分布表中,请你补充其中的数据:志愿服务时间ABCDEF频数34 10 7(2)描述数据:根据上面的频数分布表,小明绘制了如下的频数直方图(图1),请将空缺的部分补充完整;(3)分析数据:调查小组从八年级共青团员中随机抽取40名,将他们的志愿服务时间按(1)题的方式整理后,画出如图2的扇形统计图请你对比八九年级的统计图,写出一个结论;校团委计划组织志愿服务时间不足10小时的团员参加义务劳动,根据上述信息估计九年级200名团员中参加此次义务劳动的人数约为 人;(4)问题解决:校团委计划组织中考志愿服务活动,共甲、乙、丙三个服务

8、点,八年级的小颖和小文任意选择一个服务点参与志服务,求两人恰好选在同一个服务点的概率22(8分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距例:如图,在ABC中,D为边BC的中点,AEBC于E,则线段DE的长叫做边BC的中垂距(1)设三角形一边的中垂距为d(d0)若d=0,则这样的三角形一定是 ,推断的数学依据是 .(2)如图,在ABC中,B=15,AB=3,BC=8,AD为边BC的中线,求边BC的中垂距(3)如图,在矩形ABCD中,AB=6,AD=1点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC求ACF中边AF的中垂距23(8分)计算1424(10分

9、)根据图中给出的信息,解答下列问题:放入一个小球水面升高 ,放入一个大球水面升高 ;如果要使水面上升到50,应放入大球、小球各多少个?25(10分)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务该工程队有两种型号的挖掘机,已知3台型和5台型挖掘机同时施工一小时挖土165立方米;4台型和7台型挖掘机同时施工一小时挖土225立方米每台型挖掘机一小时的施工费用为300元,每台型挖掘机一小时的施工费用为180元分别求每台型, 型挖掘机一小时挖土多少立方米?若不同数量的型和型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超

10、过12960元问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?26(12分)如图,AB是O的直径,弧CDAB,垂足为H,P为弧AD上一点,连接PA、PB,PB交CD于E(1)如图(1)连接PC、CB,求证:BCP=PED;(2)如图(2)过点P作O的切线交CD的延长线于点E,过点A向PF引垂线,垂足为G,求证:APG=F;(3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=2,求O的直径AB27(12分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:0012:00,下午14:0018:00,每月工作2

11、5天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10103503020850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每

12、小题给出的四个选项中,只有一项是符合题目要求的)1、A【解题分析】分式的值为2的条件是:(2)分子等于2;(2)分母不为2两个条件需同时具备,缺一不可据此可以解答本题【题目详解】原式的值为2,(x-2)(x+3)=2,即x=2或x=-3;又|x|-22,即x2x=-3故选:A【题目点拨】此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件2、D【解题分析】根据中位数、众数、方差等的概念计算即可得解.【题目详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2= (14)2+(

13、14)2+(64)2+(54)2+(14)2=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D考点:1.众数;2.平均数;1.方差;4.中位数.3、D【解题分析】四边形ABCD是平行四边形,AO=CO,故成立;ADBC,故成立;利用排除法可得与不一定成立,当四边形是菱形时,和成立故选D.4、A【解题分析】试题解析:根据主视图和左视图为矩形是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱,再根据左视图的高度得出圆柱体的高为2;故选A考点:由三视图判断几何体5、A【解题分析】可设1本笔记本的单价为x元,1支笔的单价为y元,由题意可得等量关

14、系:3本笔记本的费用+2支笔的费用=19元,1本笔记本的费用1支笔的费用=3元,根据等量关系列出方程组,再求解即可【题目详解】设1本笔记本的单价为x元,1支笔的单价为y元,依题意有:,解得:故1本笔记本的单价为5元,1支笔的单价为2元故选A【题目点拨】本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组6、A【解题分析】把a=1,b=-1,c=-1,代入,然后计算,最后根据计算结果判断方程根的情况.【题目详解】 方程有两个不相等的实数根.故选A.【题目点拨】本题考查根的判别式,把a=1,b=-1,c=-1,代入计算是解题的突破口.7、D【解题分析】首先

15、根据有理数a,b在数轴上的位置判断出a、b两数的符号,从而确定答案【题目详解】由数轴可知:a0b,a-1,0b1,所以,A.a+b0,故原选项错误;B. ab0,故原选项错误;C.a-b15移项得,-2x15-1合并同类项得,-2x14系数化为1,得x-7.故答案为x0,得(2m+3)2-4m2=12m+90,所以m,所以m=-1舍去,综上m=3.【题目点拨】本题考查了根与系数的关系,将根与系数的关系与代数式相结合解题是解决本题的关键.17、4【解题分析】根据“距离坐标”和平面直角坐标系的定义分别写出各点即可.【题目详解】距离坐标是(1,2)的点有(1,2),(-1,2),(-1,-2),(1

16、,-2)共四个,所以答案填写4.【题目点拨】本题考查了点的坐标,理解题意中距离坐标是解题的关键.18、8.03106【解题分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数803万=.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、y=+2x;(1,1).【解题分析】试题分析:首先将两点代入解析式列出关于b和c的二元一次方程组,然后求出b和c的值,然后将抛物线配方成顶点式,求出顶点坐标.试题解析:

17、将点(0,0)和(1,3)代入解析式得:解得:抛物线的解析式为y=+2x y=+2x=1 顶点坐标为(1,1).考点:待定系数法求函数解析式.20、(1)证明见解析;(2)BH【解题分析】(1)先判断出AOC=90,再判断出OCBD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论【题目详解】(1)连接OC,AB是O的直径,点C是的中点,AOC90,OAOB,CDAC,OC是ABD是中位线,OCBD,ABDAOC90,ABBD,点B在O上,BD是O的切线;(2)由(1)知,OCBD,OCEBFE,OB2,OCOB2,AB4,BF3,在RtABF中

18、,ABF90,根据勾股定理得,AF5,SABFABBFAFBH,ABBFAFBH,435BH,BH【题目点拨】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键21、(1)7,9;(2)见解析;(3)在1520小时的人数最多;35;(4).【解题分析】(1)观察统计图即可得解;(2)根据题意作图;(3)根据两个统计图解答即可;根据图1先算出不足10小时的概率再乘以200人即可;(4)根据题意画出树状图即可解答.【题目详解】解:(1)C的频数为7,E的频数为9;故答案为7,9;(2)补全频数直方图为:(3)八九年级共青团员志愿服务时间在1

19、520小时的人数最多;200=35,所以估计九年级200名团员中参加此次义务劳动的人数约为35人;故答案为35;(4)画树状图为:共有9种等可能的结果数,其中两人恰好选在同一个服务点的结果数为3,所以两人恰好选在同一个服务点的概率=【题目点拨】本题考查了条形统计图与扇形统计图与树状图法,解题的关键是熟练的掌握条形统计图与扇形统计图与树状图法.22、(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等;(2)1;(3). 【解题分析】试题分析:(1)根据线段的垂直平分线的性质即可判断(2)如图中,作AEBC于E根据已知得出AE=BE,再求出BD的长,即可求出DE的长(3)如图中,作CHAF于

20、H,先证ADEFCE,得出AE=EF,利用勾股定理求出AE的长,然后证明ADECHE,建立方程求出EH即可解:(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等(2)解:如图中,作AEBC于E在RtABE中,AEB=90,B=15,AB=3 ,AE=BE=3,AD为BC边中线,BC=8,BD=DC=1,DE=BDBE=13=1,边BC的中垂距为1(3)解:如图中,作CHAF于H四边形ABCD是矩形,D=EHC=ECF=90,ADBF,DE=EC,AED=CEF,ADEFCE,AE=EF,在RtADE中,AD=1,DE=3,AE= =5,D=EHC,AED=CEH,ADECHE, = ,

21、= ,EH= ,ACF中边AF的中垂距为 23、1【解题分析】直接利用绝对值的性质以及二次根式的性质分别化简得出答案【题目详解】原式=14+27=116+27=1【题目点拨】本题考查了实数的运算,解题的关键是熟练掌握运算顺序24、详见解析【解题分析】(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可(1)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可【题目详解】解:(1)设一个小球使水面升高x厘米,由图意,得2x=2116,解得x=1设一个大球使水面升高y厘米,由图意,得1y=2116,解得:y=2所以,放入一个小球水面升高1cm,放入

22、一个大球水面升高2cm(1)设应放入大球m个,小球n个,由题意,得,解得:答:如果要使水面上升到50cm,应放入大球4个,小球6个25、(1)每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米;(2)共有三种调配方案方案一: 型挖据机7台,型挖掘机5台;方案二: 型挖掘机8台,型挖掘机4台;方案三: 型挖掘机9台,型挖掘机3台当A型挖掘机7台, 型挖掘机5台的施工费用最低,最低费用为12000元【解题分析】分析:(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用详解:(1)设每台型,型挖掘机一小时分别挖土立方米和立方米

23、,根据题意,得解得所以,每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米(2)设型挖掘机有台,总费用为元,则型挖据机有台根据题意,得 ,因为,解得,又因为,解得,所以所以,共有三种调配方案方案一:当时, ,即型挖据机7台,型挖掘机5台;方案二:当时, ,即型挖掘机8台,型挖掘机4台;方案三:当时, ,即型挖掘机9台,型挖掘机3台,由一次函数的性质可知,随的减小而减小,当时,此时型挖掘机7台, 型挖掘机5台的施工费用最低,最低费用为12000元点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题26、(1)见解析;(2)

24、见解析;(3)AB=1【解题分析】(1)由垂径定理得出CPB=BCD,根据BCP=BCD+PCD=CPB+PCD=PED即可得证;(2)连接OP,知OP=OB,先证FPE=FEP得F+2FPE=180,再由APG+FPE=90得2APG+2FPE=180,据此可得2APG=F,据此即可得证;(3)连接AE,取AE中点N,连接HN、PN,过点E作EMPF,先证PAE=F,由tanPAE=tanF得,再证GAP=MPE,由sinGAP=sinMPE得,从而得出,即MF=GP,由3PF=5PG即,可设PG=3k,得PF=5k、MF=PG=3k、PM=2k,由FPE=PEF知PF=EF=5k、EM=4

25、k及PE=2k、AP=k,证PEM=ABP得BP=3k,继而可得BE=k=2,据此求得k=2,从而得出AP、BP的长,利用勾股定理可得答案【题目详解】证明:(1)AB是O的直径且ABCD,CPB=BCD,BCP=BCD+PCD=CPB+PCD=PED,BCP=PED;(2)连接OP,则OP=OB,OPB=OBP,PF是O的切线,OPPF,则OPF=90,FPE=90OPE,PEF=HEB=90OBP,FPE=FEP,AB是O的直径,APB=90,APG+FPE=90,2APG+2FPE=180,F+FPE+PEF=180,F+2FPE=1802APG=F,APG= F;(3)连接AE,取AE中

26、点N,连接HN、PN,过点E作EMPF于M,由(2)知APB=AHE=90,AN=EN,A、H、E、P四点共圆,PAE=PHF,PH=PF,PHF=F,PAE=F,tanPAE=tanF,由(2)知APB=G=PME=90,GAP=MPE,sinGAP=sinMPE,则,MF=GP,3PF=5PG,设PG=3k,则PF=5k,MF=PG=3k,PM=2k由(2)知FPE=PEF,PF=EF=5k,则EM=4k,tanPEM=,tanF=,tanPAE=,PE=,AP=k,APG+EPM=EPM+PEM=90,APG=PEM,APG+OPA=ABP+BAP=90,且OAP=OPA,APG=ABP

27、,PEM=ABP,则tanABP=tanPEM,即,则BP=3k,BE=k=2,则k=2,AP=3、BP=6,根据勾股定理得,AB=1【题目点拨】本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、四点共圆条件、相似三角形的判定与性质、三角函数的应用等知识点27、(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件【解题分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值(2)设生产甲种产品用x分,则生产乙种产品用(25860-x)分,分别求出甲乙两种生产多少件产品【题目详解

28、】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分由题意得:,解这个方程组得:,答:生产一件甲产品需要15分,生产一件乙产品需要20分(2)设生产甲种产品共用x分,则生产乙种产品用(25860-x)分则生产甲种产品件,生产乙种产品件w总额=1.5+2.8=0.1x+2.8=0.1x+1680-0.14x=-0.04x+1680,又60,得x900,由一次函数的增减性,当x=900时w取得最大值,此时w=0.04900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元),此时甲有=60(件),乙有:=555(件),答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件【题目点拨】考查了一次函数和二元一次方程组的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 数学中考 > 预测、仿真、押题