1、课题3整式学习目标1、了解整式的有关概念,会识别单项式、多项式和整式.2、能说出一个单项式的系数和次数,多项式的项的系数和次数,以及多项式的项数和次数。学习策略理解概念,掌握形式,主动探索学习过程复习巩固小芳房间的窗户如图所示,其中上方的装饰物由两个四分之一圆和一个半圆组成(它们的半径相同)(1)装饰物所占的面积是多少?(2)窗户中能射进阳光的部分的面积是多少?(窗框面积忽略不计)(提示:装饰物的面积即是一个圆的面积。)新课学习 学习准备1、 是单项式,单项式的系数是 ,单项式的次数是 。2、 是多项式, 是多项式的项、常数项是 ,多项式的次数 .3、 是整式。4、阅读教材:第三节整式1.理解
2、单项式和多项式的概念材料一:小芳房间的窗户如图所示,其中上方的装饰物由两个四分之一圆和一个半圆组成(它们的半径相同)(1)装饰物所占的面积是多少?(2)窗户中能射进阳光的部分的面积是多少?(窗框面积忽略不计)(提示:装饰物的面积即是一个圆的面积。)材料二:当水结冰时,其体积大约会比原来增加,x立方米的水结成冰后体积是多少?材料三:如图,一个长方体的箱子紧靠墙角,它的长、宽、高分别是a,b,c。这个箱子露在外面的表面积是多少?(注意:箱子露在外面的部分只有三个面。)归结:数字与字母的乘积的代数式叫单项式。单独一个数或一个字母也是单项式。一个单项式中,所有字母的指数和叫做这个单项式的次数。几个单项
3、式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。在一个多项式中,次数最高的项的次数叫做这个多项式的次数。2.实践练习:1、下列代数式是否都是单项式?r2h ,2r,0,a+b,abc ,-m ,6,a 。2、r2h的系数是_,次数是_; abc的系数是_ , 次数是_;-m的系数是_, 次数是_; x2yz的系数是_, 次数是_。3、指出下列多项式的项和次数:(1) a3-a2b+ab2-b3 (2) 3n4-2n2+14、x3-x+1是一个 次 项式;x3-2x2y2+3y2是一个 次 项式。注意:(1)单项式只能含有乘法运算以及以数字为除数的除法运算,不能含有加减运算,更不能含有以
4、字母为除式的除法运算。(2)多项式中含有加减运算,也可以含有乘方、乘除运算,但不能含有以字母为除式的除法运算。如,+b-1不是多项式。(3)单项式只含有字母的,它的系数是1或-1,1可以不写;单项式的系数包括它前面的符号;单项式的系数是带分数时,通常写成假分数.单项式中的某个字母没有写指数,则次数是1;单独一个非零数的次数是0;单项式的次数仅与字母有关,而与系数指数无关。(4)多项式的项数由组成该多项式的单项式的个数确定,有几个单项式就有几项;多项式的次数是多项式中次数最高项的次数。3.教材拓展例1、以下代数式是否是整式?为什么?,解:因为整式包括单项式和多项式,所以整式有:2、x3yb-2是
5、关于x、y的六次单项式,则a、b应满足什么条件?尝试应用1、判断下列各代数式是否是单项式。如果不是,请简要说明理由;如果是,请指出它的系数与次数:(1)x+1; (2) ;(3)r2; (4) -a2b 2多项式-x3-xy+y3-3是_次_项式,二次项系数为_,常数项是_,三次项系数的和_。3、对于整式3x-1,下列说法错误的是( )。A是二项式 B是二次式 C是多项式 D是一次式4、下列说法正确的是( )A代数式一定是单项式 B单项式一定是代数式C单项式x的次数是0 D单项式-23x2y的次数是65、已知(a-1)x2ya+1是关于x、y的五次单项式,试求下列代数式的值:(1)a2+2a+
6、1 (2) (a+1)27已知x+y=,xy= ,求代数式6x+5xy+6y的值.自主总结1、数字与字母的乘积的代数式叫 。单独一个数或一个字母也是单项式。一个单项式中,所有字母的 叫做这个单项式的 。2、 叫做多项式。在多项式中,每个单项式叫做多项式的 。在一个多项式中, 叫做这个多项式的次数。3、单项式和多项式统称 。达标测试1.如果是五次单项式,则n的值为()A.1B.2C.3D.42.多项式是()A.三次三项式B.二次四项式C.三次四项式D.二次三项式3.多项式的次数和项数分别为()A.5,3B.5,2C.2,3D.3,34.对于单项式的系数.次数分别为()A.2,2B.2,3C.D.5.下列说法中正确的是()A.是六次三项式B.是二次三项式C.是五次三项式D.是六次三项式6.单项式的系数为,次数为。7.多项式是次项式,各项分别为,各项系数的和为。8.的3倍的相反数可表示为,系数为,次数为。9.下列各式:,其中单项式有,多项式有。10.若单项式的次数是3,求当y=3时此单项式的值。