1、专题02 整式与因式分解一 选择题1(2022浙江温州)计算的结果是A6 BC3D2(2022江苏宿迁)下列运算正确的是()A B C D3(2022陕西)计算:()ABCD4(2022浙江嘉兴)计算a2a()AaB3aC2a2Da35(2022四川眉山)下列运算中,正确的是()ABCD6(2022江西)下列计算正确的是()A B C D7(2022浙江宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形内,其中矩形纸片和正方形纸片的周长相等若知道图中阴影部分的面积,则一定能求出()A正方形纸片的面积 B四边形的面积 C的面积 D的面积8(2022浙江温州)化简的结果
2、是()ABCD9(2022江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A9B10C11D1210(2022浙江绍兴)下列计算正确的是()A B C D11(2022云南)按一定规律排列的单项式:x,3x,5x,7x,9x,第n个单项式是()A(2n-1)B(2n+1)C(n-1)D(n+1)12(2022重庆)把菱形按照如图所示的规律拼图案,其中第个图案中有1个菱形,第个图案中有3个菱形,第个图案中有5个菱形,按此规律排列下去,则第个图案中菱形的个数为()A15B13C11D913(2022安徽)下列各式中,计算结果等于的是()ABCD14(
3、2022四川成都)下列计算正确的是()A B C D15(2022山东滨州)下列计算结果,正确的是()ABCD16(2022重庆)用正方形按如图所示的规律拼图案,其中第个图案中有5个正方形,第个图案中有9个正方形,第个图案中有13个正方形,第个图案中有17个正方形,此规律排列下去,则第个图案中正方形的个数为()A32B34C37D4117(2022湖南湘潭)下列整式与为同类项的是()ABCD18(2022江苏苏州)下列运算正确的是()ABCD19(2022重庆)对多项式任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:,给出下列说法:至少存在一种“加算操作”,使其结果与原
4、多项式相等;不存在任何“加算操作”,使其结果与原多项式之和为0;所有的“加算操作”共有8种不同的结果以上说法中正确的个数为()A0B1C2D3二填空题20(2022江苏苏州)已知,则_21(2022四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为_22(2022四川乐山)已知,则_23(2022湖南邵阳)已知,则_24(2022天津)计算的结果等于_25(2022江苏扬州)掌握地震知识,提升防震意识根据里氏震级的定义,地震所释放出的能量与震级的关系为(其中为大于0的常数),那么震级为8级的地震
5、所释放的能量是震级为6级的地震所释放能量的_倍26(2022山东泰安)观察下列图形规律,当图形中的“”的个数和“”个数差为2022时,n的值为_27(2022四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为_28(2022山东滨州)若,则的值为_29(2022山东泰安)地球的体积约为1012立方千米,太阳的体积约为1.41018立方千米,地球的体积约是太阳体积的倍数是
6、_(用科学记数法表示,保留2位有效数字)30(2022四川德阳)已知(x+y)2=25,(xy)2=9,则xy=_31(2022浙江嘉兴)分解因式:m21_32(2022湖南怀化)因式分解:_33(2022浙江绍兴)分解因式: _34(2022浙江宁波)分解因式:x2-2x+1=_35(2022江苏连云港)若关于的一元二次方程的一个解是,则的值是_36(2022浙江丽水)如图,标号为,的矩形不重叠地围成矩形,已知和能够重合,和能够重合,这四个矩形的面积都是5.,且(1)若a,b是整数,则的长是_;(2)若代数式的值为零,则的值是_37(2022四川德阳)古希腊的毕达哥拉斯学派对整数进行了深入的
7、研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物用点排成的图形如下:其中:图的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是,第三个三角形数是,图的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是,第三个正方形数是,由此类推,图中第五个正六边形数是_38(2022湖南怀化)正偶数2,4,6,8,10,按如下规律排列,2468101214161820则第27行的第21个数是_三解答题39(2022江苏苏州)已知,求的值40(2022江苏宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超
8、市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为 元;乙超市的购物金额为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?41(2022湖南衡阳)先化简,再求值:,其中,42(2022浙江金华)如图1,将长为,宽为的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形 (1)用关于a的代数式表示图2中小正方形的边长(2)当时,该小正方形的面积是多少?43(2022安徽)观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等
9、式:,按照以上规律解决下列问题:(1)写出第5个等式:_;(2)写出你猜想的第n个等式(用含n的式子表示),并证明44(2022浙江丽水)先化简,再求值:,其中45(2022重庆)若一个四位数的个位数字与十位数字的平方和恰好是去掉个位与十位数字后得到的两位数,则这个四位数为“勾股和数”例如:,2543是“勾股和数”;又如:,4325不是“勾股和数”(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”的千位数字为,百位数字为,十位数字为,个位数字为,记,当,均是整数时,求出所有满足条件的46(2022重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各
10、数位上的数字之和m整除,则称N是m的“和倍数”例如:,247是13的“和倍数”又如:,214不是“和倍数”(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且在a,b,c中任选两个组成两位数,其中最大的两位数记为,最小的两位数记为,若为整数,求出满足条件的所有数A47(2022浙江嘉兴)设是一个两位数,其中a是十位上的数字(1a9)例如,当a4时,表示的两位数是45(1)尝试:当a1时,1522251210025;当a2时,2526252310025;当a3时,3521225 ;(2)归纳:与100a(a1)25有怎
11、样的大小关系?试说明理由(3)运用:若与100a的差为2525,求a的值专题02 整式与因式分解一 选择题1(2022浙江温州)计算的结果是A6 BC3D【答案】A【分析】根据有理数的加法法则计算即可【详解】解:故选:A【点评】本题考查了有理数的加法,掌握绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值是解题的关键2(2022江苏宿迁)下列运算正确的是()A B C D【答案】C【分析】由合并同类项可判断A,由同底数幂的乘法可判断B,由积的乘方运算可判断C,由幂的乘方运算可判断D,从而可得答案【详解】解:, 故A不符合题意;, 故B不符合题意;, 故C符合题
12、意;, 故D不符合题意;故选:C【点睛】本题考查的是合并同类项,同底数幂的乘法,积的乘方运算,幂的乘方运算,掌握以上基础运算是解本题的关键3(2022陕西)计算:()ABCD【答案】C【分析】利用单项式乘单项式的法则进行计算即可【详解】解:故选:C【点睛】本题考查了单项式乘单项式的运算,正确地计算能力是解决问题的关键4(2022浙江嘉兴)计算a2a()AaB3aC2a2Da3【答案】D【分析】根据同底数幂的乘法法则进行运算即可【详解】解: 故选D【点睛】本题考查的是同底数幂的乘法,掌握“同底数幂的乘法,底数不变,指数相加”是解本题的关键5(2022四川眉山)下列运算中,正确的是()ABCD【答
13、案】D【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案【详解】解:A. ,根据同底数幂的乘法法则可知:,故选项计算错误,不符合题意;B. ,和不是同类项,不能合并,故选项计算错误,不符合题意;C. ,根据完全平方公式可得:,故选项计算错误,不符合题意;D. ,根据单项式乘多项式的法则可知选项计算正确,符合题意;故选:D【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则,解题的关键是掌握同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则6(2022江西)下列计算正确的是()A B C D【答案】B【
14、分析】利用同底数幂的乘法,去括号法则,单项式乘多项式,完全平方公式对各选项依次判断即可【详解】解:A、,故此选项不符合题意;B、,故此选项符合题意;C、,故此选项不符合题意;D、,故此选项不符合题意故选:B【点睛】本题考查了整式的混合运算,涉及到同底数幂的乘法,去括号法则,单项式乘多项式的运算法则,完全平方公式等知识熟练掌握各运算法则和的应用是解题的关键7(2022浙江宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形内,其中矩形纸片和正方形纸片的周长相等若知道图中阴影部分的面积,则一定能求出()A正方形纸片的面积 B四边形的面积 C的面积 D的面积【答案】C【分析
15、】设正方形纸片边长为x,小正方形EFGH边长为y,得到长方形的宽为x-y,用x、y表达出阴影部分的面积并化简,即得到关于x、y的已知条件,分别用x、y列出各选项中面积的表达式,判断根据已知条件能否求出,找到正确选项【详解】根据题意可知,四边形EFGH是正方形,设正方形纸片边长为x,正方形EFGH边长为y,则长方形的宽为x-y,所以图中阴影部分的面积=S正方形EFGH+2SAEH+2SDHG=2xy,所以根据题意,已知条件为xy的值,A.正方形纸片的面积=x2,根据条件无法求出,不符合题意;B.四边形EFGH的面积=y2, 根据条件无法求出,不符合题意;C.的面积=,根据条件可以求出,符合题意;
16、D.的面积=,根据条件无法求出,不符合题意;故选 C【点睛】本题考查整式与图形的结合,熟练掌握正方形、长方形、三角形等各种形状的面积公式,能正确用字母列出各种图形的面积表达式是解题的关键8(2022浙江温州)化简的结果是()ABCD【答案】D【分析】先化简乘方,再利用单项式乘单项式的法则进行计算即可【详解】解:,故选:D【点睛】本题考查单项式乘单项式,掌握单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式是解题的关键9(2022江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A9B1
17、0C11D12【答案】B【分析】列举每个图形中H的个数,找到规律即可得出答案【详解】解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+22,第4个图中H的个数为4+23=10,故选:B【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H的个数,找到规律:每个图形比上一个图形多2个H是解题的关键10(2022浙江绍兴)下列计算正确的是()A B C D【答案】A【分析】根据多项式除以单项式、同底数幂的乘法、完全平方公式、幂的乘方法则逐项判断即可【详解】解:A、,原式计算正确;B、,原式计算错误;C、,原式计算错误;D、,原式计算错误;故选:A【点睛】本题考查
18、了多项式除以单项式、同底数幂的乘法、完全平方公式和幂的乘方,熟练掌握运算法则是解题的关键11(2022云南)按一定规律排列的单项式:x,3x,5x,7x,9x,第n个单项式是()A(2n-1)B(2n+1)C(n-1)D(n+1)【答案】A【分析】系数的绝对值均为奇数,可用(2n-1)表示;字母和字母的指数可用xn表示【详解】解:依题意,得第n项为(2n-1)xn,故选:A【点睛】本题考查的是单项式,根据题意找出规律是解答此题的关键12(2022重庆)把菱形按照如图所示的规律拼图案,其中第个图案中有1个菱形,第个图案中有3个菱形,第个图案中有5个菱形,按此规律排列下去,则第个图案中菱形的个数为
19、()A15B13C11D9【答案】C【分析】根据第个图案中菱形的个数:;第个图案中菱形的个数:;第个图案中菱形的个数:;第n个图案中菱形的个数:,算出第个图案中菱形个数即可【详解】解:第个图案中菱形的个数:;第个图案中菱形的个数:;第个图案中菱形的个数:;第n个图案中菱形的个数:,则第个图案中菱形的个数为:,故C正确故选:C【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律13(2022安徽)下列各式中,计算结果等于的是()ABCD【答案】B【分析】利用整式加减运算和幂的运算对每个选项计算即可【详解】A,不是同类项,不能合并在一起,故选项A不合题意;B,符合题
20、意;C,不是同类项,不能合并在一起,故选项C不合题意;D,不符合题意,故选B【点睛】本题考查了整式的运算,熟练掌握整式的运算性质是解题的关键14(2022四川成都)下列计算正确的是()A B C D【答案】D【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定【详解】解:A.,故该选项错误,不符合题意;B.,故该选项错误,不符合题意;C.,故该选项错误,不符合题意;D.,故该选项正确,符合题意;故选:D【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键15(2022山东滨州
21、)下列计算结果,正确的是()ABCD【答案】C【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可【详解】解:A、,该选项错误;B、,该选项错误;C、,该选项正确;D、,该选项错误;故选:C【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键16(2022重庆)用正方形按如图所示的规律拼图案,其中第个图案中有5个正方形,第个图案中有9个正方形,第个图案中有13个正方形,第个图案中有17个正方形,此规律排列下去,则第个图案中正方形的个数为()A32B34C37D41【答案】C【分析】第1个图中有5个正方形
22、,第2个图中有9个正方形,第3个图中有13个正方形,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n个图形的算式,然后再解答即可【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+41;第3个图中有13个正方形,可以写成:5+4+4=5+42;第4个图中有17个正方形,可以写成:5+4+4+4=5+43;第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:49+1=37故选:C【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键17(2022湖南湘潭)下列整
23、式与为同类项的是()ABCD【答案】B【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项求解【详解】解:由同类项的定义可知,a的指数是1,b的指数是2A、a的指数是2,b的指数是1,与不是同类项,故选项不符合题意;B、a的指数是1,b的指数是2,与是同类项,故选项符合题意;C、a的指数是1,b的指数是1,与不是同类项,故选项不符合题意;D、a的指数是1,b的指数是2,c的指数是1,与不是同类项,故选项不符合题意故选:B【点睛】此题考查了同类项,判断同类项只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同18(2022江苏苏州)下
24、列运算正确的是()ABCD【答案】B【分析】通过,判断A选项不正确;C选项中、不是同类项,不能合并;D选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B选项正确【详解】A. ,故A不正确;B. ,故B正确;C. ,故C不正确;D. ,故D不正确;故选B【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键19(2022重庆)对多项式任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:,给出下列说法:至少存在一种“加算操作”,使其结果与原多项式相等;不存在任何“加算操作”,使其结果与
25、原多项式之和为0;所有的“加算操作”共有8种不同的结果以上说法中正确的个数为()A0B1C2D3【答案】D【分析】给添加括号,即可判断说法是否正确;根据无论如何添加括号,无法使得的符号为负号,即可判断说法是否正确;列举出所有情况即可判断说法是否正确【详解】解:说法正确又无论如何添加括号,无法使得的符号为负号说法正确当括号中有两个字母,共有4种情况,分别是、;当括号中有三个字母,共有3种情况,分别是、;当括号中有四个字母,共有1种情况,共有8种情况说法正确正确的个数为3故选D【点睛】本题考查了新定义运算,认真阅读,理解题意是解答此题的关键二填空题20(2022江苏苏州)已知,则_【答案】24【分
26、析】根据平方差公式计算即可【详解】解:,故答案为:24【点睛】本题考查因式分解的应用,先根据平方差公式进行因式分解再整体代入求值是解题的关键21(2022四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为_【答案】5【分析】设正方形a、b、c、d的边长分别为a、b、c、d,分别求得b=c,c=d,由“优美矩形”ABCD的周长得4d+2c=26,列式计算即可求解【详解】解:设正方形a、b、c、d的边长分别为a、b、c、d,“优美矩形”ABCD的周长为26,4d+2c=26,a=2b,c=a+b,d
27、=a+c,c=3b,则b=c,d=2b+c=c,则c=d,4d+d =26,d=5,正方形d的边长为5,故答案为:5【点睛】本题考查了整式加减的应用,认真观察图形,根据长方形的周长公式推导出所求的答案是解题的关键22(2022四川乐山)已知,则_【答案】【分析】根据已知式子,凑完全平方公式,根据非负数之和为0,分别求得的值,进而代入代数式即可求解【详解】解:,即,故答案为:【点睛】本题考查了因式分解的应用,掌握完全平方公式是解题的关键23(2022湖南邵阳)已知,则_【答案】2【分析】将变形为即可计算出答案【详解】故答案为:2【点睛】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识2
28、4(2022天津)计算的结果等于_【答案】【分析】根据同底数幂的乘法即可求得答案【详解】解:,故答案为:【点睛】本题考查了同底数幂的乘法,熟练掌握计算方法是解题的关键25(2022江苏扬州)掌握地震知识,提升防震意识根据里氏震级的定义,地震所释放出的能量与震级的关系为(其中为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的_倍【答案】1000【分析】分别求出震级为级和震级为6级所释放的能量,然后根据同底数幂的除法即可得到答案【详解】解:根据能量与震级的关系为(其中为大于0的常数)可得到,当震级为8级的地震所释放的能量为:,当震级为6级的地震所释放的能量为:,震级为
29、8级的地震所释放的能量是震级为6级的地震所释放能量的1000倍故答案为:1000【点睛】本题考查了利用同底数幂的除法底数不变指数相减的知识,充分理解题意并转化为所学数学知识是解题的关键26(2022山东泰安)观察下列图形规律,当图形中的“”的个数和“”个数差为2022时,n的值为_【答案】不存在【分析】首先根据n=1、2、3、4时,“”的个数分别是3、6、9、12,判断出第n个图形中“”的个数是3n;然后根据n=1、2、3、4,“”的个数分别是1、3、6、10,判断出第n个“”的个数是;最后根据图形中的“”的个数和“”个数差为2022,列出方程,解方程即可求出n的值是多少即可【详解】解:n=1
30、时,“”的个数是3=31;n=2时,“”的个数是6=32;n=3时,“”的个数是9=33;n=4时,“”的个数是12=34;第n个图形中“”的个数是3n;又n=1时,“”的个数是1=;n=2时,“”的个数是,n=3时,“”的个数是,n=4时,“”的个数是,第n个“”的个数是,由图形中的“”的个数和“”个数差为2022,解得:无解解得:故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键27(2022四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名假
31、设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为_【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数【详解】解:第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),.第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律28(2022山东滨州)若,则的值为_【答案】90【分析】将变形得到,再把,代入进行计算求
32、解【详解】解:, 故答案为:90【点睛】本题主要考查了代数式求值,完全平方公式的应用,灵活运用完全平方公式是解答关键29(2022山东泰安)地球的体积约为1012立方千米,太阳的体积约为1.41018立方千米,地球的体积约是太阳体积的倍数是_(用科学记数法表示,保留2位有效数字)【答案】7.110-7【分析】直接利用整式的除法运算法则结合科学记数法求出答案【详解】地球的体积约为1012立方千米,太阳的体积约为1.41018立方千米,地球的体积约是太阳体积的倍数是:1012(1.41018)7.110-7故答案是:7.110-7【点睛】本题主要考查了用科学记数法表示数的除法与有效数字,正确掌握运
33、算法则是解题关键30(2022四川德阳)已知(x+y)2=25,(xy)2=9,则xy=_【答案】4【分析】根据完全平方公式的运算即可.【详解】,+=4=16,=4.【点睛】此题主要考查完全平方公式的灵活运用,解题的关键是熟知完全平方公式的应用.31(2022浙江嘉兴)分解因式:m21_【答案】【分析】利用平方差公式进行因式分解即可【详解】解:m21 故答案为:【点睛】本题考查的是利用平方差公式分解因式,掌握“平方差公式的特点”是解本题的关键32(2022湖南怀化)因式分解:_【答案】【分析】根据提公因式法和平方差公式进行分解即可【详解】解:,故答案为:【点睛】本题考查了提公因式法和平方差公式
34、,熟练掌握提公因式法和平方差公式是解题的关键33(2022浙江绍兴)分解因式: _【答案】【分析】利用提公因式法即可分解【详解】,故答案为:【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解34(2022浙江宁波)分解因式:x2-2x+1=_【答案】(x-1)2【详解】由完全平方公式可得:故答案为【点睛】错因分析容易题.失分原因是:因式分解的方法掌握不熟练;因式分解不彻底.35(2022江苏连云港)若关于的一元二次方程的一个解是,则的值是_【答案】1【分析】根据一元二次方程解的定义把代入到进行求解即可【详解】关于x的一元二次方程的一个解是
35、,故答案为:1【点睛】本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键36(2022浙江丽水)如图,标号为,的矩形不重叠地围成矩形,已知和能够重合,和能够重合,这四个矩形的面积都是5.,且(1)若a,b是整数,则的长是_;(2)若代数式的值为零,则的值是_【答案】 【分析】(1)根据图象表示出PQ即可;(2)根据分解因式可得,继而求得,根据这四个矩形的面积都是5,可得,再进行变形化简即可求解【详解】(1)和能够重合,和能够重合,故答案为:;(2),或,即(负舍)或这四个矩形的面积都是5,【点睛】本题考查了代数式及其分式的化简求值,准确理解题意,熟练掌握知识点
36、是解题的根据37(2022四川德阳)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物用点排成的图形如下:其中:图的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是,第三个三角形数是,图的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是,第三个正方形数是,由此类推,图中第五个正六边形数是_【答案】45【分析】根据题意找到图形规律,即可求解【详解】根据图形,规律如下表:三角形3正方形4五边形5六边形6M边形m11111121+21+211+2111+21111+231+2+31+2+31+21+2+31+
37、21+21+2+31+21+21+21+2+341+2+3+41+2+3+41+2+31+2+3+41+2+31+2+31+2+3+41+2+31+2+31+2+31+2+3+4n由上表可知第n个M边形数为:,整理得:,则有第5个正六边形中,n=5,m=6,代入可得:,故答案为:45【点睛】本题考查了整式-图形类规律探索,理解题意是解答本题的关键38(2022湖南怀化)正偶数2,4,6,8,10,按如下规律排列,2468101214161820则第27行的第21个数是_【答案】744【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数第n行有n个
38、数,则前n行共有个数,再根据偶数的特征确定第几行第几个数是几【详解】解:由图可知,第一行有1个数,第二行有2个数,第三行有3个数,第n行有n个数前n行共有1+2+3+n=个数前26行共有351个数,第27行第21个数是所有数中的第372个数这些数都是正偶数,第372个数为3722=744故答案为:744【点睛】本题考查了数字类的规律问题,解决这类问题的关键是先根据题目的已知条件找出其中的规律,再结合其他已知条件求解三解答题39(2022江苏苏州)已知,求的值【答案】,3【分析】先将代数式化简,根据可得,整体代入即可求解【详解】原式,原式【点睛】本题考查了整式的乘法运算,代数式化简求值,整体代入
39、是解题的关键40(2022江苏宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为 元;乙超市的购物金额为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?【答案】(1)300,240(2)当时,选择乙超市更优惠,当时,两家超市的优惠一样,当时,选择乙超市更优惠,当时,选择甲超市更优惠【分析】(1)根据甲、乙两家超市的优惠方案分别进行计算即可;(2)设单位购
40、买x件这种文化用品,所花费用为y元, 可得当时, 显然此时选择乙超市更优惠,当时 再分三种情况讨论即可(1)解: 甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;该单位需要购买30件这种文化用品,则在甲超市的购物金额为(元),乙超市全部按标价的8折售卖,该单位需要购买30件这种文化用品,则在甲超市的购物金额为(元),故答案为:(2)设单位购买x件这种文化用品,所花费用为y元,又当10x=400时,可得 当时, 显然此时选择乙超市更优惠,当时, 当时,则 解得: 当时,两家超市的优惠一样,当时,则 解得: 当时,选择乙超市更优惠,当时,则 解得: 当时,选择甲超市更优惠【点睛】本题考查的是列代数式,一次函数的实际应用,一元一次不等式的实际应用,清晰的分类讨论是解本题的关键41(2022湖南衡阳)先化简,再求值:,其中,【答案】,【分析】利用平方差公式与多项式乘法法则进行化简,再代值计算【详解】解:原式,将,代入式中得:原式【点睛】本题考查多项式乘法与平方差公式,熟练掌握相关运算法则是解题的关键42(2022浙江金华)如图1,将长为,宽为的矩形分割成四个全等的直角三角形,拼