四川省成都市高中2018级高三第一次教学质量诊断性考试理科数学模拟试题(含答案)

上传人:画** 文档编号:156735 上传时间:2020-10-12 格式:PDF 页数:10 大小:1,019.08KB
下载 相关 举报
四川省成都市高中2018级高三第一次教学质量诊断性考试理科数学模拟试题(含答案)_第1页
第1页 / 共10页
四川省成都市高中2018级高三第一次教学质量诊断性考试理科数学模拟试题(含答案)_第2页
第2页 / 共10页
四川省成都市高中2018级高三第一次教学质量诊断性考试理科数学模拟试题(含答案)_第3页
第3页 / 共10页
四川省成都市高中2018级高三第一次教学质量诊断性考试理科数学模拟试题(含答案)_第4页
第4页 / 共10页
亲,该文档总共10页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、成都市高中2018级第一次教学质量诊断性考试模拟试题 理科数学 注意事项: 1答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如 需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。 写在本试卷上无效。 3考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给的四个选项中,只有 一项是符合题目要求的。 1. 集合 * 13NAxxx= ,的非空子集个数为 A.3 B.4 C.7 D.8 2. 设命题 1 p:复数Rz的充要条件是z

2、z=;命题 2 p:若复数z所对应的点在第一 象限,则复数 z i 所对应的点在第四象限 那么下列命题中,真命题是 A. 12 pp B.() 12 pp C.() 12 pp D.()() 12 pp 3. 函数( )2sinsin2f xxx=在0,2的零点个数为 A2 B3 C4 D5 4. 函数 sinyxx=+ 的部分图象可能是 A B C D 5. 记cos( 80 ) k = ,那么tan100 = A. 2 1 k k B. 2 1 k k C. 2 1 k k D. 2 1 k k 6. 直三棱柱ABC-A1B1C1中,BCA=90,M,N分别是A1B1,A1C1的中点, B

3、C=CA=CC1,则BM与AN所成的角的余弦值为 A. 1 10 B. 2 5 C. 30 10 D. 2 2 7. 如图,网格纸上小正方形的边长为 1,粗实线画出的是某多面 体的三视图,则该多面体的个条棱中,最长的棱的长度为 A.6 2 B.4 2 C.6 D.4 8. 设( )f x是定义域为 R R 的偶函数,且在()0,+单调递减,则 Af( 3 1 log 4 )f( 3 2 2 )f( 2 3 2 ) Bf( 3 1 log 4 )f( 2 3 2 )f( 3 2 2 ) Cf( 3 2 2 )f( 2 3 2 )f( 3 1 log 4 ) Df( 2 3 2 )f( 3 2 2

4、 )f( 3 1 log 4 ) 9. 已知 ( ) lg,010, 1 6,0 2 xx f x xx = + 1 若abc,且 ( )( )( )f af bf c= ,则abc的取值范围是 A. ()1,10 B. ()5,6 C. ()10,12 D. ()20,24 10. 底面直径为 4 的圆柱容器内放入 8 个半径为 1 的小球, 则该圆柱容器的最小高度为 A8 B6 C. 22 2+ D23 2+ 11. 分子为 1 且分母为正整数的分数称为单位分数,不难发现, 11111111111111111111 1= 2362461226123042567290110132156mn

5、+=+=+ , 其中,m nN,且 mn ,则( ) n f x dx m = A.5 B.6 C.7 D.8 12. 己知函数( ) 2 1 2ln x f x x =的定义域为 1 0, e ,若对任意的 1 x, 2 1 0,x e , ( )()() 1212 22 1212 f xf xm xx xxx x + 恒成立,则实数m的取值范围为 A(,3 B(,4 C(,5 D(,6 二、填空题:本题共 4 小题,每小题 5 分,共 20 分。 13. 已知为偶函数,当时,则曲线在点 处的切线方程是_. 14.已知 A,B,C 是圆 O 上的三点,若 1 () 2 AOABAC=+ ,则

6、AB 与AC 的夹角为 _. 15. 如图,正方体 1111 ABCDABC D的棱长为a,动点P在对角线 1 BD上,过点P作垂 直于 1 BD的平面,记这样得到的截面多边形(含三角形)的周长为y, 设BPx=,则当 32 3 , 33 xaa 时,函数( )yf x=的值域为 _. 16. 已知关于x的不等式() xx x xmeme有且仅有两个正整数解,则实数m的取值 范围是_. 三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 1721 题为必 考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。 (一)必考题:共 60 分。 17 (12

7、分) 已知( )2sinf xx= ,把函数 ( )f x的图象向左平移 (0) 2 个单位, 得到函数( )yg x=的图象, 函数( )yg x=的 图象关于直线 6 x =对称,记函数( )( )( )h xf xg x=. (1)求函数( )yh x=的最小正周期和单调增区间; (2)画出函数( )yh x=在区间, 2 2 上的大致图象. 18.(12 分) 设函数 ( )f x= 2 (41)43axaxa+ex (1)若曲线y= f (x)在点(1, (1)f )处的切线与x轴平行,求a; (2)若 ( )f x在x = 2处取得极小值,求a的取值范围 19.(12 分) ( )

8、f x 0 x 时,( )0g x ,求b的最大值; (3)已知1.414221.4143,且 11 ab ab +=. (1)求 33 ab+的最小值; (2)是否存在, a b,使得236ab+=?并说明理由. xOyO cos sin x y = = , () 02, lOAB, ABP 理科数学参考答案与评分说明 注意事项: 1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题 的主要考查内容比照评分标准制订相应的评分细则 2. 对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的 内容和难度, 可视影响的程度决定后继部分的给分, 但不得超

9、过该部分正确解答应得分数的 一半;如果后继部分的解答有较严重的错误,就不再给分 3. 解答右端所注分数,表示考生正确做到这一步应得的累加分数 4. 只给整数分数,选择题和填空题不给中间分 一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只 有一项是符合题目要求的。 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A A B D B C C C C D C B 二、填空题:本题共 4 小题,每小题 5 分,共 20 分。 13. 210 xy+ = 14. 2 15. 3 2a (无花括号不给分) 16. 3 9 4e , 2 4 3e

10、) 三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 1721 题为必 考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。 (一)必考题:共 60 分。 17 (12 分) 解:(1)( )2sin()g xx=+, 根据( )g x的图象关于直线 6 x =对称, 得 () 62 mm+=+Z, 即 () 3 mm=+Z,又 0 2 1 2 ,则当x( 1 a ,2)时,f (x)0 所以f (x)在x=2 处取得极小值(8 分) 若a 1 2 ,则当x(0,2)时,x20,ax1 1 2 x10所以 2 不是f (x)的极小值点(10 分) 综

11、上可知,a的取值范围是( 1 2 ,+)(12 分) 19 (12 分) 解:(1)由题设及正弦定理得sinsinsinsin 2 AC ABA + = 因为 sinA0,所以sinsin 2 AC B + =(2 分) 由180ABC +=,可得sincos 22 ACB+ =,故cos2sincos 222 BBB =(3 分) 因为cos0 2 B ,(4 分) 故 1 sin 22 B =,因此B=60(5 分) (2)由题设及(1)知ABC的面积 3 4 ABC Sa= 由正弦定理得 () sin 120 sin31 sinsin2tan2 C cA a CCC =+(9 分) 由于

12、ABC为锐角三角形,故 0A90,0C90. 由于A+C=120, 所以 30C90, 故 1 2 2 a, 从而 33 82 ABC S; (4 分) (ii)当2b 时,若x满足2 xx ee+22b,即 2 0ln(12 )xbbb,从而不存在, a b,使得236ab+= (10 分) O 22 1xy+= 2 =lO 2 tank=l2ykx=lO 2 2 | 1 1k + 1k (,) 4 2 (,) 24 3 (,) 44 3 l cos, ( 2sin xt t yt = = + 44 3 ) ABP A t B t P t 2 AB P tt t + = A t B t 2

13、2 2 sin10tt+ = 2 2sin AB tt+=2sin P t=P( , )x y cos , 2sin . P P xt yt = = + P 2 sin2 , 2 22 cos2 22 x y = = ( 44 3 ) 贴 条 形 码 区 (正面朝上勿贴出虚线框外) 成都市高中2018 第一次教学质量诊断性考试模拟试题 理科数学答题卡 姓名座位号 准考证号 注 意 事 项 1.答题前,考生务必先认真核对条形码上的姓名、准考证号和座位号, 无误 后将本人姓名、准考证号和座位号填写在相应位置,同时将背面左上角相 应的座位号涂黑。 2.选择题填涂时,必须使用 2B 铅笔按$图示规范填

14、涂;非选择题必须 使用 0.5 毫米的黑色墨迹签字笔作答;作图题可先用铅笔绘出,确认后再 用 0.5 毫米黑色墨迹签字笔描写清楚。 3.必须在题目所指示的答题区域内作答,超出答题区域的答案无效,在草稿 纸、试题卷上答题无效。 4.保持答题卡清洁、完整,严禁折叠,严禁使用涂改液和修正带, 考生禁填 缺考标记 缺考考生由监考员贴条 形码,并用 2B 铅笔填涂 上面的缺考标记。 第 I 卷选择题(考生需用 2B 铅笔填涂) 1ABCD5ABCD9ABCD 2ABCD6ABCD10ABCD 3ABCD7ABCD11ABCD 4ABCD8ABCD12ABCD 第 II 卷非选择题(考生须用 0.5 毫米

15、黑色墨迹的签字笔书写) 二、填空题:本题共 4 小题,每小题 5 分,满分 20 分。 13._14._ 15._16._ 三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17 21 题为必考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根 据要求作答。 (一)必考题:共 60 分。 17.(本小题满分 12 分) 第 17 题图 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 19.(本小题满分 12 分) 请在各题目的答题区域内作答, 超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 18

16、.(本小题满分 12 分) 请在各题目的答题区域内作答, 超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 21.(本小题满分 12 分) 请在各题目的答题区域内作答, 超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 (二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果 多做,则按所做的第一题计分。 我所选择的题目是: 【22】 【23】 请在各题目的答题区域内作答, 超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 20.(本小题满分 12 分) 第 20 题图 请在各题目的答题区域内作答, 超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 月考试卷 > 高三上月考