1、主主 题题 集合的基本运算补集 教学内容教学内容 课堂笔记课堂笔记 学习目标:理解给定集合中一个子集的补集的含义,能求给定子集的补集. 重点:能求给定子集的补集. 难点:补集的含义. 阅读教材 1213 页,完成下来问题: 1如果一个集合含有所研究问题中涉及的 ,那么就称这个集合为全集全集, 记做: . 2. 对于一个集合 A,由全集 U 中 的所有元素组成的集合称为集合 A 相对于全集 U 的补集补集,记作 ,即 . 3. U AC A ; U AC A ; U C U . 4.完成教材第 13 页练习题. 问题驱动一 全集一定是实数集 R 吗? 问题驱动二 () UU CC A ; U C
2、 . 例例1 设 9,1,2,3 ,3,4,5,6Ux xAB是小于 的正整数 求: U C A, U C B 例例2 设全集 ,Ux xAx xx x是三角形是锐角三角形 ,B是钝角三角形 求:AB,() U CAB 1.设全集 U1,2,3,4,5,集合 A1,2,则UA_. 2. 设全集为 U,M1,2,UM3,则 U_. 3. 已知全集 UR,Ax|1x2,Bx|x0,则U(AB)_. 4. 设集合 Ax|xm0,Bx|2x4,全集 UR,且(UA)B,求实 数 m 的取值范围 5. 已知集合 Ax|xa,Bx|x0若 A(RB),求实数 a 的取 值范围 本节课有什么收获,自己写下来
3、吧 做作业之前,先回顾一下课堂上所学的知识吧! 1.设集合 U1,2,3,4,5,6,M1,2,4,则UM 等于( ) AU B1,3,5 C3,5,6 D2,4,6 2.设 UR,Ax|x0,Bx|x1,则 A(UB)等于( ) Ax|0 x1 Bx|0x1 Cx|x1 3.已知全集 U1,2,3,4,5,M1,2,N2,5,则如图所示,阴影部分表示的 集合是( ) A3,4,5 B1,3,4 C1,2,5 D3,4 4. 已知集合 Ax|xa,Bx|x1,若 A(RB),则实数 a 的取值范围是 _ 5. 设全集 UR,集合 Ax|x0,By|y1,则UA 与UB 的包含关系是 _ 6.已知全集 UR,Ax|1xb,UAx|x1,或 x2,则实数 b_. 7. 已知集合 Ax|3x6,Bx|2x9 (1)求 AB,(RB)A; (2)已知 Cx|ax2 4. m2. 5. a|a1 巩固:巩固: 1.C 2.B 3.D 4. a|a1 5. UAUB 6.2 7. (1)ABx|3x6;x|x2 或 3x6 或 x9 (2)a|2a8