1、2.5 二次函数与一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,第2课时 利用二次函数求方程的近似根,第二章 二次函数,北师大版九年级下册数学教学课件,1.会用二次函数图象求一元二次方程的近似解及一元二次不等式的解集; (重点) 2.通过研究二次函数与一元二次方程的联系体会数形结合思想的应用.(难点),学习目标,问题:上节课我们学习了一元二次方程ax2+bx+c=0(a0)和二次函数y=ax2+bx+c(a0)之间的关系,那么如何利用二次函数图象直接求出一元二次方程的根呢?,导入新课,回顾与思考,例1:求一元二次方程 的近似根(精确到0.1).,分析:一元二次方程 x-2x-1=0 的
2、根就是抛物线 y=x-2x-1 与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.,讲授新课,解:画出函数 y=x-2x-1 的图象(如下图),由图象可知,方程有两个实数根,一个在-1与0之间,另一个在2与3之间.,先求位于-1到0之间的根,由图象可估计这个根是-0.4或-0.5,利用计算器进行探索,见下表:,观察上表可以发现,当x分别取-0.4和-0.5时,对应的y由负变正,可见在-0.5与-0.4之间肯定有一个x使y=0,即有y=x2-2x-1的一个根,题目只要求精确到0.1,这时取x=-0.4或x=-0.5都符合
3、要求.但当x=-0.4时更为接近0.故x1-0.4. 同理可得另一近似值为x22.4.,(1)用描点法作二次函数 y=ax2+bx+c的图象;,(2)观察估计二次函数 的图象与x轴的交点的横坐标;,(可将单位长度十等分,借助计算器确定其近似值);,(3)确定方程ax2+bx+c=0的近似根;,利用图象法求一元二次方程的近似根,1.已知二次函数yax2bxc的图象如图所示,则一元二次方程ax2bxc0的近似根为( ) Ax12.1,x20.1 Bx12.5,x20.5 Cx12.9,x20.9 Dx13,x21,解析:由图象可得二次函数yax2bxc图象的对称轴为x1,而对称轴右侧图象与x轴交点
4、到原点的距离约为0.5,x20.5;又对称轴为x1,则 1,x12(1)0.52.5.故x12.5,x20.5.故选B.,B,针对训练,解答本题首先需要根据图象估计出一个根,再根据对称性计算出另一个根,估计值的精确程度,直接关系到计算的准确性,故估计尽量要准确,例2:求一元二次方程 的近似根(精确到0.1).,分析:令y=x-2x-1-3=x-2x-4,则x-2x-1=3的根就是抛物线 y=x-2x-4 与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标.,解:y=x-2x-4的图象如图所示.,解:由图象可知方程的一根在3到 4之间,另一根在-1到-2之间
5、. (1)先求3到4之间的根.利用计算器进行探索:,因此,x=3.2是方程的一个近似根. (2)可类似地求出另一个根为x=-1.2.,例2变式:你还能利用y=x-2x-1 的图象求一元二次方程 的近似根吗(精确到0.1)?,分析:在y=x-2x-1的图象中作直线y=3,再用图象法求出直线与抛物线交点的横坐标,则横坐标的近似值即为所求方程的近似根.,y=3,一元二次方程ax2+bx+c=m的根就是二次函数y=ax2+bx+c 与直线y=m(m是实数)图象交点的横坐标 .,既可以用求根公式求二次方程的根,也可以通过画二次函数图象来估计一元二次方程的根.,问题1 函数y=ax2+bx+c的图象如图,
6、那么 方程ax2+bx+c=0的根是 _ _; 不等式ax2+bx+c0的解集 是_; 不等式ax2+bx+c0的解集 是_.,y,x1=-1, x2=3,x3,-1x3,合作探究,拓广探索:,函数y=ax2+bx+c的图象如图,那么 方程ax2+bx+c=2的根是 _; 不等式ax2+bx+c2的解集是_; 不等式ax2+bx+c2的解集是_.,3,-1,O,x,2,(4,2),(-2,2),x1=-2, x2=4,x4,-2x4,y,问题2,如果不等式ax2+bx+c0(a0)的解集是x2 的一切实数,那么函数y=ax2+bx+c的图象与 x轴有_ 个交点,坐标是_.方程ax2+bx+c=
7、0的根是_.,1,(2,0),x=2,问题3,如果方程ax2+bx+c=0 (a0)没有实数根,那么 函数y=ax2+bx+c的图象与 x轴有_个交点; 不等式ax2+bx+c0的解集是多少?,0,解:(1)当a0时, ax2+bx+c0无解;,(2)当a0时, ax2+bx+c0的解集是一切实数.,试一试:利用函数图象解下列方程和不等式: (1) -x2+x+2=0; -x2+x+20; -x2+x+20; x2-4x+40; -x2+x-20.,x1=-1 , x2=2,-1 x2,x1-1 , x22,y=x2-4x+4,x=2,x2的一切实数,x无解,y=-x2+x-2,x无解,x无解
8、,x为全体实数,要点归纳,有两个交点x1,x2 (x1x2),有一个交点x0,没有交点,二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次不等式的关系,y0,x1xx2. y0,x2x或xx1,y0,x1xx2. y0,x2x或xx1,y0,x0之外的所有实数;y0,无解,y0,x0之外的所有实数;y0,无解,y0,所有实数;y0,无解,y0,所有实数;y0,无解,判断方程 ax2+bx+c =0 (a0,a,b,c为常数)一个解x的范围是( ) A. 3 x 3.23 B. 3.23 x 3.24 C. 3.24 x 3.25 D. 3.25 x 3.26,C,1.根据下列表格的对
9、应值:,当堂练习,2.小颖用计算器探索方程ax2+bx+c=0的根,作出如图所示的图象,并求得一个近似根x=-3.4,则方程的另一个近似根(精确到0.1)为( ) A4.4 B3.4 C2.4 D1.4,D,3.用图象法求一元二次方程 的近似根(精确到0.1).,解:画出x2+x-1=0的图象,如图所示,由图象知,方程有两个根,一个在-2和-1之间,另一个在0到1之间.通过计算器估算,可得到抛物线与x轴交点的横坐标大约为 -1.6和0.6.即一元二次方程的实数根为x1-1.6,x20.6.,4.已知二次函数 的图象,利用图象回答问题: (1)方程 的解是什么? (2)x取什么值时,y0 ? (
10、3)x取什么值时,y0 ?,解:(1)x1=2,x2=4;,(2)x4;,(3)2x4.,课堂小结,二次函数图象,由图象与x轴的交点位置, 判断方程根的近似值,一元二次方程的根,一元二次不等式的解集,“部编本”语文教材解读 “部编本”语文教材的编写背景。 (一)教材要体现国家意识、主流意识形态、党的认同,体现立德树人从娃娃抓起。 (二)体现核心素养,中国学生发展核心素养包括社会责任,国家认同、国际理解、人文底蕴、科学精神、审美情趣、学会学习、身心健康、实践创新。 (三)语文、道德与法制、历史三个学科教材统编是大趋势。 (四)“一标多本”教材质量参差不齐,“部编本”力图起到示范作用。 二、“部编
11、本”教材的编写理念: (一)体现核心价值观,做到“整体规划,有机渗透”。 (二)接地气,满足一线需要,对教学弊病起纠偏作用。提倡全民阅读,注重两个延伸:往课外阅读延伸,往语文生活延伸。 (三)加强了教材编写的科学性,编研结合。 (四)贴近当代学生生活,体现时代性。 “部编本”语文教材的七个创新点: (一)选文创新:课文总数减少,减少汉语拼音的难度。 (二)单元结构创新更加灵活的单元结构体制,综合性更强。 (三)重视语文核心素养,重建语文知识体系。 (四)三位一体,区分不同课型。“教读”、“自读”和“课外阅读”三位一体,整体提高学生的语文素养。 (五)把课外阅读纳入教材体制。 (六)识字写字教学更加讲究科学性。 (七)提高写作教学的效果。 新教材注重了六个意识。 、国家意识。 、目标意识。 、文体意识,非常突出文学素养的培养。 、读书意识。 、主体意识。 、科研意识。 小结:好教,但教好不易。,下课啦!,